ISSN 0564-3783  

Main page
Information to authors
Editorial board
Mobile version

In Ukrainian

Export citations

Molecular organization of 5S ribosomal DN of Deschampsia Antarctica

Ishchenko .., Panchuk .., Andreev .., Kunakh V.., Volkov R..


SUMMARY. Deschampsa antarctca, one of the two angiosperm species growing in the extreme conditions of Antarctica, provides a unique model for studying the relationship between genetic polymorphism and such factors of evolution as isolation, migration and adaptation to new environmental conditions. Molecular markers represent a useful tool for the investigation of these questions. To examine the potential of 5S rDNA to be used for the discrimination of D. antarctica populations we cloned and sequenced this genomic region for plants from three populations of this species from Maritime Antarctica. It was shown that in the genome of D. antarctica at least two structural classes of 5S rDNA are present, which differ by numerous base substitutions and insertions/deletions in the intergenic spacer. Based on this structural polymorphism we propose to apply this region for the evaluation of the intraspecific genetic diversity of D. antarctica.

Key words: genetic polymorphism, molecular evolution, 5S rDNA, Deschampsa antarctca

Tsitologiya i Genetika 2018, vol. 52, no. 6, pp. 30-37

E-mail: o.rusak, i.panchuk, i.o.andreev, kunakh, r.volkov

Ishchenko .., Panchuk .., Andreev .., Kunakh V.., Volkov R.. Molecular organization of 5S ribosomal DN of Deschampsia Antarctica, Tsitol Genet., 2018, vol. 52, no. 6, pp. 30-37.

In "Cytology and Genetics":
O. O. Ishchenko. . Panchuk. O. Andreev, V. A. Kunakh, R. A. Volkov Molecular Organization of 5S Ribosomal DN of Deschapmpsia antarctica, Cytol Genet., 2018, vol. 52, no. 6, pp. 416421
DOI: 10.3103/S0095452718060105


1. Parnikoza, I.Y., Maidanuk, D.N., and Kozeretska, I.A., Are Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. migratory relicts?, Cytol. Genet., 2007, vol. 41, no. 4, pp. 226229. doi 10.3103/ S0095452707040068

2. Mosyakin, S.L., Bezusko, L.G., and Mosyakin, A.S., Origins of native vascular plants of Antarctica: comments from a historical phytogeography viewpoint, Cytol. Genet., 2007, vol. 41, no. 5, pp. 308316. doi 10.3103/S009545270705009X

3. Fasanella, M., Premoli, A.C., Urdampilleta, J.D., Gonzalez, M.L., and Chiapella, J.O., How did a grass reach Antarctica? The Patagonian connection of Deschampsia antarctica (Poaceae), Bot. J. Lin. Soc., 2017, vol. 185, no. 4, pp. 511524. doi 10.1093/botlinnean/box070

4. Chwedorzewska, K.J., Bednarek, P.T., and Puchalski, J., Molecular variation of Antarctic grass Deschampsia antarctica Desv. from King George Island (Antarctica), Acta Soc. Bot. Pol., 2004, vol. 73, no. 1, pp. 2329.

5. Wouw, M.V.D., Dijk, P.V., and Huiskes, A.H., Regional genetic diversity patterns in Antarctic hairgrass (Deschampsia antarctica Desv.), J. Biogeogr., 2008, vol. 35, no. 2, pp. 365376. doi 10.1111/j.1365-2699.2007.01784.x

6. Andreev, I.O., Spiridonova, E.V., Kyryachenko, S.S., and Parnikoza, I.Yu., Population-genetic analysis of Deschampsia antarctica from two regions of Maritime Antarctica, Moscow Univ. Biol. Sci. Bull., 2010, vol. 65, no. 4, pp. 208210. doi 10.3103/s00963-92510040243

7. Andreev, I.O., Volkov, R.A., Kozeretska, I.A., Parnikoza, I.Yu., Spiridonova, K.V., Kiryachenko, S.S., Maydanyuk, D.M., and Kunakh, V.A., Geographical gradient of genetic diversity of Deschampsia antarctica Desv. from the Maritime Antarctic, Ukr. Antarctic J., 2012, nos. 1011, pp. 282288.

8. Volkov, R.A., Kozeretska, I.A., Kyryachenko, S.S., Andreev, I.O., Maidanyuk, D.N., Parnikoza, I.Yu., and Kunakh, V.A., Molecular evolution and variability of ITS1 and ITS2 in populations of Deschampsia antarctica from two regions of the Maritime Antarctic, Polar Sci., 2010, vol. 4, no. 3, pp. 469478. doi 10.1016/j.polar.2010.04.011

9. González, M.L., Urdampilleta, J.D., Fasanella, M., Premoli, A.C., and Chiapella, J.O., Distribution of rDNA and polyploidy in Deschampsia antarctica E. Desv. in Antarctic and Patagonic populations, Polar Biol., 2016, vol. 39, no. 9, pp. 16631677. doi 10.1007/ s00300-016-1890-5

10. González, M.L., Chiapella, J.O., and Urdampilleta, J.D., Characterization of some satellite DNA families in Deschampsia antarctica (Poaceae), Polar Biol., 2017, vol. 41, no. 3, pp. 457468. doi 10.1007/s00300-017-2205-1

11. Röser, M., Winterfeld, G., Grebenstein, B., and Hemleben, V., Molecular diversity and physical mapping of 5S rDNA in wild and cultivated oat grasses (Poaceae: Aveneae), Mol. Phylogen. Evol., 2001, vol. 21, no. 2, pp. 198217. doi 10.1006/mpev.2001.1003

12. Peng, Y.Y., Wei, Y.M., Baum, B.R., and Zheng, Y.L., Molecular diversity of the 5S rRNA gene and genomic relationships in the genus Avena (Poaceae: Aveneae), Genome, 2008, vol. 51, no. 2, pp. 137154. doi 10.1139/G07-111

13. Baum, B.R. and Feldman, M., Elimination of 5S DNA unit classes in newly formed allopolyploids of the genera Aegilops and Triticum, Genome, 2010, vol. 53, no. 6, pp. 4308. doi 10.1139/G10-017

14. Baum, B.R., Edwards, T., and Johnson, A., Codependence of repetitive sequence classes in genomes: phylogenetic analysis of 5S rDNA families in Hordeum (Triticeae: Poaceae), Genome, 2010, vol. 53, no. 3, pp. 180202. doi 10.1139/g09-096

15. Baum, B.R., Edwards, T., Mamuti, M., and Johnson, D.A., Phylogenetic relationships among the polyploid and diploid Aegilops species inferred from the nuclear 5S rDNA sequences (Poaceae: Triticeae), Genome, 2012, vol. 55, no. 3, pp. 177193. doi 10.1139/g2012-006

16. Volkov, R.A., Zanke, C., Panchuk, I.I., and Hemleben, V., Molecular evolution of 5S rDNA of Solanum species (sect. Petota): application for molecular phylogeny and breeding, Theor. Appl. Genet., 2001, vol. 103, no. 8, pp. 12731282. doi 10.1007/s001220100670

17. Saini, A. and Jawali, N., Molecular evolution of 5S rDNA region in Vigna subgenus Ceratotropis and its phylogenetic implications, Plant Syst. Evol., 2009, vol. 280, no. 34, pp. 187206. doi 10.1007/s00606-009-0178-4

18. Garcia, S., Garnatje, T., and Kovarik, A., Plant rDNA database: ribosomal DNA loci information goes online, Chromosoma, 2012, vol. 121, no. 4, pp. 389394. doi 10.1007/s00412-012-0368-7

19. Tynkevich, Y.O., Nevelska, A.O., Chorney, I.I., and Volkov, R.A., Organization and variability of the 5S rDNA intergenic spacer of Lathyrus venetus, Bull. Vavilov Soc. Genet. Breed. Ukraine, 2015, vol. 13, no. 1, pp. 8187.

20. Volkov, R.A., Panchuk, I.I., Borisjuk, N.V., Hosiawa-Baranska, M., Maluszynska, J., and Hemleben, V., Evolutional dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid Atropa belladonna, BMC Plant Biol., 2017, vol. 17, no. 1, pp. 115. doi 10.1186/ s12870-017-0978-6

21. Volkov, R.A., Medina, F.J., Zentgraf, U., and Hemleben, V., Molecular cell biology: organization and molecular evolution of rDNA, nucleolar dominance, and nucleolus structure, Progr. Bot., 2004, vol. 65, pp. 106146.

22. Cloix, C., Tutois, S., Mathieu, O., Cuvillier, C., Espagno, M.C., Picard, C., and Tourmente, S., Analysis of 5S rDNA arrays in Arabidopsis thaliana: physical mapping and chromosome-specific polymorphisms, Genome Res., 2000, vol. 10, no. 5, pp. 679690. doi 10.1101/gr.10.5.679

23. Coen, E.S., Thoday, J.M., and Dover, G., Rate of turnover of structural variants in the rDNA gene family of Drosophila melanogaster, Nature, 1982, vol. 295, no. 5850, pp. 564568.

24. Volkov, A.R. and Panchuk, I.I., 5S rDNA of Dactylis glomerata (Poaceae): molecular organization and taxonomic application, Bull. Vavilov Soc. Genet. Breed. Ukraine, 2014, vol. 12, no. 1, pp. 311.

25. Rusak, O.O., Petrashchuk, V.I., Panchuk, I.I., and Volkov, R.A., Molecular organization of 5S rDNA in two Ukrainian populations of sycamore (Acer pseudoplatanus), Bull. Vavilov Soc. Genet. Breed. Ukraine, 2016, vol. 14, no. 2, pp. 216220.

26. Rogers, S.O. and Bendich, A.J., Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues, Plant Mol. Biol., 1985, vol. 5, no. 2, pp. 6976. doi 10.1007/BF00020088

27. Tynkevich, Y.O. and Volkov, R.A., Structural organization of 5S ribosomal DNA in Rosa rugosa, Cytol. Genet., 2014, vol. 48, no. 1, pp. 16. doi 10.3103/ S0095452714010095

28. Sambrook, J., Fritsch, E., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Laboratory, 1989.

29. Thompson, J.D., Higgins, D.G., and Gibson, T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 1994, vol. 22, no. 22, pp. 46734680.

30. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nuclec Acids Res., 1997, vol. 25, no. 17, pp. 33893402.

31. Soreng, R.J., Peterson, P.M., Romschenko, K., Davidse, G., Zuloaga, F.O., Judziewicz, E.J., Filgueiras, T.S., Davis, J.I., and Morrone, O.A., A worldwide phylogenetic classification of the Poaceae (Gramineae), J. Syst. Evol., 2015, vol. 53, no. 2, pp. 117137. doi 10.1111/jse.12150/epdf

32. Douet, J. and Tourmente, S., Transcription of the 5S rRNA heterochromatic genes is epigenetically controlled in Arabidopsis thaliana and Xenopus laevis, Heredity, 2007, vol. 99, no. 1, pp. 513. doi 10.1038/sj.hdy.6800964

33. Baum, B.R., Bailey, L.G., Belyayev, A., Raskina, O., and Nevo, E., The utility of the nontranscribed spacer of 5S rDNA units grouped into unit classes assigned to haplomesa test on cultivated wheat and wheat progenitors, Genome, 2004, vol. 47, no. 3, pp. 590599. doi 10.1139/g03-146

34. Amosova, A.V., Bolsheva, N.L., Zoshchuk, S.A., Twardovska, M.O., Yurkevich, O.Y., Andreev, I.O., Samatadze, T.E., Badaeva, E.D., Kunakh, V.A., and Muravenko, O.V., Comparative molecular cytogenetic characterization of seven Deschampsia (Poaceae) species, PLoS One, 2017, vol. 12, no. 4. e0175760. doi 10.1371/journal.pone.0175760

Copyright© ICBGE 2002-2021 Coded & Designed by Volodymyr Duplij Modified 22.06.21