Цитологія і генетика 2020, том 54, № 4, 3-14
Cytology and Genetics 2020, том 54, № 4, 283–292, doi: https://www.doi.org/10.3103/S0095452720040088

Отримання ліній пщениці (Triticum aestivum L.) з дріжджовими генами біосинтезу трегалози

Кваско А.Ю., С.В. Ісаєнков С.В., Дмитрук К. В., Сибірний А.А., Блюм Я.Б., Ємець А.І.

  1. ДУ «Інститут харчової біотехнології та геноміки НАН України», Україна, 04123, Київ, вул. Осиповського, 2а
  2. Інститут біології клітини НАН України, Україна, 79005, Львів, вул. Драгоманова, 14/16

За допомогою двох методів Agrobacterium-опосередкованої трансформації (in vitro та in planta) перенесено дріжджові (Saccharomyces cerevisiae) гени біосинтезу трегалози TPS1 і TPS2 до ряду сортів пшениці (Triticum aestivum L.) задля підвищення їх посухостійкості. Для цього було створено векторні конструкції pBract214-TPS1 та pBract214-TPS2 з цільовими генами TPS1 та TPS2, відповідно, під контролем промотора убіхітину кукурудзи (PUbi), та селективним маркерним геном гігроміцин-фосфотрансферази (hpt). Як експланти для трансформації in vitro використовували 3–5 добові калюси, отримані з незрілих зародків пшениці. Селекцію трансгенних рослин-регенерантів здійснювали на поживному середовищі, що містило
30 мг/л гігроміцину як селективного агента. У результаті трансформації за допомогою методу in planta було отримано насіння (трансгенне покоління Т1) пшениці, яке пророщували і відбирали на стійкість до гігроміцину. Перенесення та інтеграцію цільових генів в геном пшениці підтверджено за допомогою полімеразної ланцюгової реакції з використанням специфічних праймерів до генів TPS1 та TPS2.

РЕЗЮМЕ. С использованием двух методов Agrobacterium-опосредованной трансформации (in vitro и in planta) перенесены дрожжевые (Saccharomyces cerevisiae) гены биосинтеза трегалозы TPS1 и TPS2 в ряд сортов пшеницы (Triticum aestivum L.) для повышения их засухоустойчивости. Для этого были созданы векторные конструкции pBract214-TPS1 и pBract214-TPS2 с целевыми генами TPS1 и TPS2, соответственно, под контролем промотора убиквитина кукурузы (PUbi), и селективным маркерным геном гигромицин-фосфотрансферазы (hpt). В качестве эксплантов для трансформации in vitro использовали 3–5 дневные калюсы незрелых зародышей пшеницы. Селекцию трансгенных растений-регенерантов осуществляли на питательной среде с добавлением 30 мг/л гигромицина (как селективного агента). В результате проведения трансформации с исполь-зованием метода in planta были получены семена (трансгенное поколение Т1) пшеницы, которые проращивали и отбирали на устойчивость к гигромицину. Перенесение и интеграцию целевых генов в геном пшеницы подтверждали с помощью ПЦР-анализа с использованием специфических прайме-ров к генам TPS1 и TPS2.

Ключові слова: трегалоза, дрожжевые гены TPS1, TPS2, генетическая трансформация, Agrobacterium tumefaciens, in vitro, in planta, Triticum aestivum
трегалоза, дріжджові гени, TPS1, TPS2, генетична трансформація, Agrobacterium tumefaciens, in vitro, in planta, Triticum aestivum

Цитологія і генетика
2020, том 54, № 4, 3-14

Current Issue
Cytology and Genetics
2020, том 54, № 4, 283–292,
doi: 10.3103/S0095452720040088

Повний текст та додаткові матеріали

Цитована література

1. Yatsyshyn, V.Y., Kvasko, A.Y., and Yemets, A.I., Genetic approaches in research on the role of trehalose in plants, Cytol. Genet., 2017, vol. 51, pp. 371–383.

2. Crowe, J.H., Hoekstra, F.A., and Crowe, L.M., Anhydrobiosis, Annu. Rev. Physiol., 1992, vol. 54, pp. 579–599.

3. Bianchi, G., Gamba, A., Limiroli, R., Pozzi, N., Elster, R., Salamini, F., and Bartels, D., The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia,Physiol. Plant., 1993, vol. 87, pp. 223–226.

4. Drennan, P.M., Smith, M.T., Goldsworthy, D., and Van Staden, J., The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw., J. Plant Physiol., 1993, vol. 142, pp. 493–496.

5. Colaco, K., Kampinga, J., and Roser, B., Amorphous stability and trehalose, Science, 1995, vol. 268, pp. 788–789.

6. Kim, J., Alizadeh, P., Harding, T., Hefner-Gravink, A., and Klionsky, D.J., Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing, and ethanol shock: potential commercial applications, Appl. Environ. Microbiol., 1996, vol. 62, pp. 1563–1569.

7. An, M.-Z., Tang, Y.-Q., Mitsumasu, K., Liu, Z.-S., Shigeru, M., and Kenji, K., Enhanced thermo-tolerance for ethanol fermentation of Saccharomyces cerevisiae strain by overexpression of the gene coding for trehalose-6-phosphate synthase, Biotechnol. Lett., 2011, vol. 33, pp. 1367–1374.

8. Romero, C., Belles, J.M., Vaya, J.L., Serrano, R., and Culianezmacia, F.A., Expression of the yeast trehalose 6 phosphate synthase gene in transgenic tobacco plants: Pleiotropic phenotypes include drought tolerance, Planta, 1997, vol. 201, pp. 293–297.

9. Karim, S., Aronsson, H., Ericson, H., Pirhonen, M., Leyman, B., Welin, B., Mäntylä, E., Palva, E.T., Van Dijck, P., and Holmström, K.O., Improved drought tolerance without undesired side effects in transgenic plants producing trehalose, Plant Mol. Biol., 2007, vol. 64, pp. 371–386.

10. Jang, I.C., Oh, S.J., Seo, J.S., Choi, W.B., Song, S.I., Kim, C.H., Kim, Y.S., Seo, H.S., Choi, Y.D., Nahm, B.H., and Kim, J.K., Expression of a bifunctional fusion of the Escherichia coli genes for trehalose6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth, Plant Physiol., 2003, vol. 131, no. 2, pp. 516–524.

11. Wu, R. and Garg, A., Engineering Rice Plants with Trehalose-Producing Genes Improves Tolerance to Drought, Salt, and Low Temperature, ISB News Report, 2003. https://www.seedquest.com/News/relea-ses/ 2003/march/5456.htm.

12. Miranda, J.A., Avonce, N., Suárez, R, Thevelein, J.M., Dijck, P.V., and Iturriaga, G., A bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis,Planta, 2007, vol. 226, no. 6, pp. 1411–1421.

13. Hensel, G., Kastner, C, Oleszczuk, S., Riechen, J., and Kumlehn, J., Agrobacterium-mediated gene transfer to cereal crop plants: current protocols for barley, wheat, triticale, and maize, Int. J. Plant Genomics, 2009, vol. 1, pp. 1–9.

14. Manfroi, E., Yamazaki-Lau, E., Grando, M.F., and Roesler, E.A., Acetosyringone, pH and temperature effects on transient genetic transformation of immature embryos of Brazilian wheat genotypes by Agrobacterium tumefaciens,Genet. Mol. Biol., 2015, vol. 38, no. 4, pp. 470–476.

15. Karimi, M., Inze, D., and Depicher, A., GATE-AWAY vectors for Agrobacterium-mediated plant transformation, Trends Plant. Sci., 2002, vol. 7, pp. 193–195.

16. Fleuler, F., Stettler, T., Meyerhofer, M., Leder, L., and Mayr, I.M., Development of a novel Gateaway-based vector system for officient, multiparallel protein expression in Escherichia coli,Protein Expr. Purif., 2008, vol. 59, pp. 232–241.

17. Kvasko A.Yu., Isayenkov S.V., Krasnoperova E.E., Dmytruk K.V., and Yemets A.I., Obtaining of wheat plants with yeast genes of trehalose biosynthesis TPS1 and TPS2,Rep. Natl. Acad. Sci. Ukraine, 2020, no. 6, pp. 92–100.

18. Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, pp. 473–497.

19. Gamborg, O.L. and Eveleigh, D., Culture methods and detection of glucanases in cultures of wheat and barley, Can. J. Biochem., 1968, vol. 46, no. 5, pp. 417– 421.

20. Hensel, G., Marthe, C., and Kumlehn, J., Agrobacterium-mediated transformation of wheat using immature embryos, Methods Mol. Biol., 2017, vol. 1679, pp. 129–139.

21. Ishida, Y., Tsunashima, M., Heiei, Y., and Komari, T., Wheat (Triticum aestivum L.) transformation using immature embryos, Methods Mol. Biol., 2015, vol. 1223, pp. 189–198.

22. Zale, J.M., Agarwal, S., Loar, S., and Steber, C.M., Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens,Plant Cell Rep., 2009, vol. 28, no. 6, pp. 903–913.

23. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., and Smith, S.A., in Current Protocols in Molecular Biology, New York: Willey, 1987, pp. 431–433.

24. Amoah, B.K., Wu, H., Sparks, C., and Jones, H.D., Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue, J. Exp. Bot., 2001, vol. 52, no. 358, p. 1135–1142.

25. Fortin, C., Nester, E.W., and Dion, P., Growth inhibition and loss of virulence in cultures of Agrobacterium tumefaciens treated with acetosyringone, J. Bacteriol., 1992, vol. 174, no. 17, pp. 5676– 5685.

26. Cheng, M., Fry, J.E., Pang, S., Zhou, H., Hironaka, C.M., Duncan, D.R., Conner, T.W., and Wan, Y., Genetic transformation of wheat mediated by Agrobacterium tumefaciens,Plant Physiol., 1997, vol. 115, pp. 971–980.

27. Wu, H., Sparks, C., Amoah, B., and Jones, H.D., Factors influencing successful Agrobacterium-mediated genetic transformation of wheat, Plant Cell Rep., 2003, vol. 21, pp. 659–668.

28. Ding, L., Li, S., Gao, J., Wang, Y., Yang G., and He, G., Optimization of Agrobacterium-mediated transformation conditions in mature embryos of elite wheat, Mol. Biol. Rep., 2009, vol. 36, pp. 29–36.

29. Jones, H.D., Doherty, A., and Wu, H., Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat, Plant Methods, 2005, vol. 1, pp. 1–9.

30. Han, J., Yu, X., Chang, J., Yang, G., and He, G., Overview of the wheat genetic transformation and breeding status in China, Methods Mol. Biol., 2017, vol. 1679, no. 3, pp. 37–60.

31. Shrawat, A.K. and Lorz, H., Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers, Plant Biotechnol. J., 2006, vol. 4, pp. 575–603.

32. Li, H.W., Zang, B.S., Deng, X.W., and Wang, X.P., Overexpression of the trehalose-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice, Planta, 2011, vol. 234, pp. 1007–1018.

33. Kvasko, A.Yu., Isayenkov, S.V., Krasnoperova, E.E., Dmytruk, K.V., and Yemets, A.I., Genetic transformation of Nicotiana tabacum with yeast genes of trehalose biosynthesis TPS1 and TPS2,Visnyk Ukr. Tovarystva Genet. Selektsioneriv, 2019, vol. 18, no. 2, pp. 8–16.

34. Yei, E.T., Kwom, H.B., Han, S.E., Lee, J.T., Ryu, J.C., and Byun, M.O., Genetic engineering of drought resistant potato plants by introduction of the trehalose-6-phoshate synthase (TPS1) gene from Saccharomyces cerevisiae, Mol. Cells, 2000, vol. 10, pp. 263–268.

35. Lawlor, D.W. and Paul, M.J., Source/sink interaction underpin crop yield: the case for trehalose-6-posphate/SnRK1 in improvement of wheat, Front. Plant Sci., 2014, vol. 418, pp. 1–16.

36. IIhan, S., Ozdemir, F., and Bor, M., Contribution of trehalose biosynthetic pathway to drought stress tolerance of Capparis ovata Desf., Plant Biol., 2015, vol. 17, pp. 402–407.

37. Liu, X., Fu, L., Qin, P., Sun, Y., Liu, J., and Wang X., Overexpression of the wheat trehalose-6-phosphate synthase 11 gene enhances cold tolerance in Arabidopsis thaliana,Gene, 2019, vol. 710, pp. 210–217.