TSitologiya i Genetika 2023, vol. 57, no. 3, 3-9
Cytology and Genetics 2023, vol. 57, no. 3, 207–212, doi: https://www.doi.org/10.3103/S0095452723030064

Bacteria associated with the antarctic endemic insect Belgica Antarctica Jacobs (Diptera: Chironomidae)

Maistrenko O.M., Serga S.V., Kovalenko P.A., Kozeretska I.A.

  1. European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse, 1, 69117, Heidelberg, Germany
  2. Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology & Biogeochemistry, Landsdiep 4, 1797 SZ, t Horntje (Texel), Netherlands
  3. CBGP, INRAE, CIRAD, IRD, Institut Agro, University Montpellier, 755 avenue du Campus Agropolis, 34980 Montferrier-sur-Lez, Montpellier, France
  4. Taras Shevchenko National University of Kyiv, Volodymyrska 64/13, 01601, Kyiv, Ukraine
  5. National Antarctic Scientific Center of Ukraine, blvd. Taras Shevchenko 16, 01601, Kyiv, Ukraine
  6. Institute for Evolutionary Ecology of the National Academy of Sciences of Ukraine, Akademika Lebedeva 37, 03143, Kyiv, Ukraine

SUMMARY. Insects are one of the most successful groups of multicellular organisms with more than 1 million species. Among them, Belgica antarctica Jacobs (Diptera: Chironomidae) is an endemic species of Antarctica that exist in extremely cold conditions. A significant number of microorganisms colonize most groups of insects, which may lead to a symbiotic interaction, in many cases resulting in an increase of the adaptability of the host organism, for example to cold conditions. Using PCR methods and metagenomic analysis, we demonstrated that the endosymbiotic bacteria Spiroplasma and Wolbachia are probably absent in Belgica antarctica. Nevertheless, we identified 14 bacterial species which are potentially associated with Belgica antarctica and/or with the substrate in which this Diptera species lives by screening whole-genome sequences available in the open databases. Further analysis is needed to elucidate to what extent this association is persistent with Belgica antarctica, and whether identified microorganisms confer any adaptive advantage to this species.

Keywords: microbiome, endosymbionts, Wolbachia, Spiroplasma

TSitologiya i Genetika
2023, vol. 57, no. 3, 3-9

Current Issue
Cytology and Genetics
2023, vol. 57, no. 3, 207–212,
doi: 10.3103/S0095452723030064

Full text and supplemented materials

References

Camerota, M., Simoni, S., Giaimo, R.D., et al., Influences of Wolbachia (Rickettsiales Rickettsiaceae) on the cellular response to cold stress in Drosophila melanogaster (Diptera Drosophilidae), Redia, 2015, vol. 98, pp. 145–148.

Chown, S.L. and Convey, P., Antarctic entomology, Annu. Rev. Entomol., 2016, vol. 61, pp. 119–137. https://doi.org/10.1146/annurev-ento-010715-023537

Coelho, L.P., Alves, R., del Río, Á.R., et al., Towards the biogeography of prokaryotic genes, Nature, 2022, vol. 601, pp. 252–256. https://doi.org/10.1038/s41586-021-04233-4

Contador, T., Gañan, M., Bizama, G., et al., Assessing distribution shifts and ecophysiological characteristics of the only Antarctic winged midge under climate change scenarios, Sci. Rep., 2020, vol. 10, pp. 9087. https://doi.org/10.1038/s41598-020-65571-3

Convey, P. and Block, W., Antarctic diptera: Ecology, physiology and distribution, Eur. J. Entomol., 1996, vol. 93, pp. 1–13.

Duron, O., Bouchon, D., Boutin, S., et al., The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone, BMC Biol., 2008, vol. 6, p. 27. https://doi.org/10.1186/1741-7007-6-27

Engel, P. and Moran, N.A., The gut microbiota of insects – diversity in structure and function, FEMS Microbiol. Rev., 2013, vol. 37, pp. 699–735. https://doi.org/10.1111/1574-6976.12025

Feldhaar, H., Bacterial symbionts as mediators of ecologically important traits of insect hosts, Ecol. Entomol., 2011, vol. 36, pp. 533–543. https://doi.org/10.1111/j.1365-2311.2011.01318.x

Folmer, O., Black, M., Hoeh, W., et al., DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates, Mol. Mar. Biol. Biotechnol., 1994, vol. 3, pp. 294–299. PMID: 7881515

Fusco, V., Abriouel, H., Benomar, N., et al., Opportunistic Food-Borne Pathogens, in Food Safety and Preservation, Grumezescu, A.M., and Holban. A.M., Eds., Academic, 2018, pp. 269–306. https://doi.org/10.1016/B978-0-12-814956-0.00010-X

Gasparich, G.E., Spiroplasmas and phytoplasmas: microbes associated with plant hosts, Biologicals, 2010, vol. 38, pp. 193–203. https://doi.org/10.1016/j.biologicals.2009.11.007

Gomila, M., Bowien, B., Falsen, E., et al., Description of Pelomonas aquatica sp. nov. and Pelomonas puraquae sp. nov., isolated from industrial and haemodialysis water, Int. J. Syst. Evol. Microbiol., 2007, vol. 57, pp. 2629–2635. https://doi.org/10.1099/ijs.0.65149-0

Grimont, F. and Grimont, P.A.D., The Genus Serratia, in The Prokaryotes: A Handbook on the Biology of Bacteria, Proteobacteria: Gamma Subclass, Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E., Eds., New York: Springer-Verlag, 2006, vol. 6, pp. 219–244.

Gurung, K., Wertheim, B., and Falcao Salles, J., The microbiome of pest insects: it is not just bacteria, Entomol. Exp. Appl., 2019, vol. 167, pp. 156–170. https://doi.org/10.1111/eea.12768

Henry, Y. and Colinet, H., Microbiota disruption leads to reduced cold tolerance in Drosophila flies, Sci. Nat., 2018, vol. 105, p. 59. https://doi.org/10.1007/s00114-018-1584-7

Holmes, C.J., Jennings, E.C., Gantz, J.D., et al., The Antarctic mite, Alaskozetes antarcticus, shares bacterial microbiome community membership but not abundance between adults and tritonymphs, Polar Biol., 2019, vol. 42, pp. 2075–2085. https://doi.org/10.1007/s00300-019-02582-5

Hughes, K.A., Worland, M.R., Thorne, M.A.S., and Convey, P., The non-native chironomid Eretmoptera murphyi in Antarctica: erosion of the barriers to invasion, Biol. Invasions, 2013, vol. 15, pp. 269–281. https://doi.org/10.1007/s10530-012-0282-1

Jaramillo, A. and Castañeda, L.E., Gut microbiota of Drosophila subobscura contributes to its heat tolerance and is sensitive to transient thermal stress, Front. Microbiol., 2021, vol. 12, p. 654108. https://doi.org/10.3389/fmicb.2021.654108

Kageyama, A., Matsumoto, A., Ōmura, S., and Takahashi, Y., Humibacillus xanthopallidus gen. nov., sp. nov, Int. J. Syst. Evol. Microbiol., 2008, vol. 58, pp. 1547–1551. https://doi.org/10.1099/ijs.0.65042-0

Kelley, J.L., Peyton, J.T., Fiston-Lavier, A.-S., et al., Compact genome of the Antarctic midge is likely an adaptation to an extreme environment, Nat. Commun., 2014, vol. 5, p. 4611. https://doi.org/10.1038/ncomms5611

Konai, M., Clark, E.A., Camp, M., et al., Temperature Ranges, Growth Optima, and Growth Rates of Spiroplasma (Spiroplasmataceae, class Mollicutes) Species, Curr. Microbiol., 1996, vol. 32, pp. 314–319. https://doi.org/10.1007/s002849900056

Kovalenko, P., Trokhymets, V., Parnikoza, I., et al., Current status of Belgica antarctica Jacobs, 1900 (Diptera: Chironomidae) distribution by the data of Ukrainian Antarctic Expeditions, Ukr. Antarct. J., 2021, vol. 2, pp. 76–93. https://doi.org/10.33275/1727-7485.2.2021.679

Lau, M.-J., Ross, P.A., Endersby-Harshman, N.M., and Hoffmann, A.A., Impacts of Low Temperatures on Wolbachia (Rickettsiales: Rickettsiaceae)-Infected Aedes aegypti (Diptera: Culicidae), J. Med. Entomol., 2020, vol. 57, pp. 1567–1574. https://doi.org/10.1093/jme/tjaa074

Lo, W.-S., Ku, C., Chen, L.-L., et al., Comparison of metabolic capacities and inference of gene content evolution in mosquito-associated Spiroplasma diminutum and S. taiwanense, Genome Biol. Evol., 2013, vol. 5, pp. 1512–1523. https://doi.org/10.1093/gbe/evt108

Maistrenko, O.M., Serga, S.V., Vaiserman, A.M., and Kozeretska, I.A., Effect of Wolbachia infection on aging and longevity-associated genes in Drosophila, in Life Extension: Lessons from Drosophila, Vaiserman, A.M., Moskalev, A.A., and Pasyukova, E.G., Eds., Springer-Verlag, 2015, pp. 83–104. https://doi.org/10.1007/978-3-319-18326-8_4

Maistrenko, O.M., Serga, S.V., Vaiserman, A.M., and Kozeretska, I.A., Longevity-modulating effects of symbiosis: insights from Drosophila–Wolbachia interaction, Biogerontology, 2016, vol. 17, pp. 785–803. https://doi.org/10.1007/s10522-016-9653-9

Massey, J.H. and Newton, I.L.G., Diversity and function of arthropod endosymbiont toxins, Trends Microbiol., 2022, vol. 30, pp. 185–198. https://doi.org/10.1016/j.tim.2021.06.008

Milanese, A., Mende, D.R., Paoli, L., et al., Microbial abundance, activity and population genomic profiling with mOTUs2, Nat. Commun., 2019, vol. 10, p. 1014. https://doi.org/10.1038/s41467-019-08844-4

Mollerup, S., Friis-Nielsen, J., Vinner, L., et al., Propionibacterium acnes: Disease-causing agent or common contaminant? Detection in diverse patient samples by next-generation sequencing, J. Clin. Microbiol., 2016, vol. 54, pp. 980–987. https://doi.org/10.1128/JCM.02723-15

Ochyra, R., Lewis-Smith, R.I., and Bednarek-Ochyra, H., The Illustrated Moss Flora of Antarctica, Cambridge: Cambridge Univ., 2008.

Oh, W.T., Giri, S.S., Yun, S., et al., Janthinobacterium lividum as an emerging pathogenic bacterium affecting rainbow trout (Oncorhynchus mykiss) fisheries in Korea, Pathogens, 2019, vol. 8, p. E146. https://doi.org/10.3390/pathogens8030146

O’Neill, S.L., Giordano, R., Colbert, A.M., et al., 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects, Proc. Nat. Acad. Sci., 1992, vol. 89, pp. 2699–2702. https://doi.org/10.1073/pnas.89.7.2699

Pavinato, V.A.C., Wijeratne, S., Spacht, D., et al., Leveraging targeted sequencing for non-model species: a step-by-step guide to obtain a reduced SNP set and a pipeline to automate data processing in the Antarctic Midge, Belgica Antarctica, bioRxiv, 2019, p. 772384. https://doi.org/10.1101/772384

Potocka, M. and Krzemińska, E., Trichocera macu-lipennis (Diptera)–an invasive species in Maritime Antarctica, Peer J., 2018, vol. 6, p. e5408. https://doi.org/10.7717/peerj.5408

Reddy, G.S.N., Matsumoto, G.I., Schumann, P., et al., Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov., Int. J. Syst. Evol. Microbiol., 2004, vol. 54, pp. 713–719. https://doi.org/10.1099/ijs.0.02827-0

Ruscheweyh, H.-J., Milanese, A., Paoli, L., et al., mOTUs: Profiling taxonomic composition, transcriptional activity and strain populations of microbial communities, Curr. Protoc., 2021, vol. 1, p. e218. https://doi.org/10.1002/cpz1.218

Teets, N.M., Peyton, J.T., Colinet, H., et al., Gene expression changes governing extreme dehydration tolerance in an Antarctic insect, Proc. Nat. Acad. Sci., 2012, vol. 109, pp. 20744–20749. https://doi.org/10.1073/pnas.1218661109

Timmis, K.N., Pseudomonas putida: a cosmopolitan opportunist par excellence, Environ. Microbiol., 2002, vol. 4, pp. 779–781. https://doi.org/10.1046/j.1462-2920.2002.00365.x

Richard, K.J., Convey, P., and Block, W., The terrestrial arthropod fauna of the Byers Peninsula, Livingston Island, South Shetland Islands, Polar Biol., 1994, vol. 14, pp. 371–379. https://doi.org/10.1007/BF00240257

Serga, S.V., Maistrenko, O.M., Matiytsiv, N.P., et al., Effects of Wolbachia infection on fitness-related traits in Drosophila melanogaster, Symbiosis, 2021, vol. 83, pp. 163–172. https://doi.org/10.1007/s13199-020-00743-3

Serga, S.V., Maistrenko, O.M., and Kozeretska, I.A., Wolbachia: an endosymbiont of Drosophila, in Microbial Symbionts Functions and Molecular Interactions on Host, Dhanasekaran, D., Ed., Elsevier, 2023, pp. 599–620.

Sugg, P., Edwards, J.S., and Baust, J., Phenology and life history of Belgica antarctica, an Antarctic midge (Diptera: Chironomidae), Ecol. Entomol., 1983, vol. 8, pp. 105–113. https://doi.org/10.1111/j.1365-2311.1983.tb00487.x

Usher, M.B. and Edwards, M., A dipteran from south of the Antarctic Circle: Belgica antarctica (Chironomidae), with a description of its larvae, Biol. J. Linn. Soc., 1984, vol. 23, pp. 19–31. https://doi.org/10.1111/j.1095-8312.1984.tb00803.x

Wirth, W.W. and Gressitt, J.L., Diptera: Chironomidae (Midges), Antarct. Res. Ser., 1967, vol. 10, pp. 197–203. https://doi.org/10.1029/AR010p0197

Worland, M.R., Eretmoptera murphyi: pre-adapted to survive a colder climate, Physiol. Entomol., 2010, vol. 35, pp. 140–147. https://doi.org/10.1111/j.1365-3032.2010.00722.x

Zhang, D.-C., Schumann, P., Liu, H.-C., et al., Arthrobacter alpinus sp. nov., a psychrophilic bacterium isolated from alpine soil, Int. J. Syst. Evol. Microbiol., 2010, vol. 60, pp. 2149–2153. https://doi.org/10.1099/ijs.0.017178-0

Zhou, W., Rousset, F., and O’Neil, S., Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences, Proc. R. Soc. B, 1998, vol. 265, pp. 509–515. https://doi.org/10.1098/rspb.1998.0324