The year 2022 paid a bicentennial tribute to the phenomenal work of the father of Genetics, Gregor Johann Mendel for deciphering the genetic logic behind the phenotypes. His principles were distilled as the law of segregation and law of independent assortment. His work was rediscovered 34 years later by H. De Vries, C. Correns, and E. Tschermak and popularized by W. Bateson. While C. Darwin accounted for similarities among organisms through the differences in the form of evolution, G. Mendel accounted for similarities through heredity; the ideological gaps were bridged mathematically by R. Fisher. Later with the test of time, the interaction among researchers paved Mendelian principles into different branches of genetics viz., cytogenetics, molecular genetics, population genetics, quantitative genetics, etc. At present we have landed in the era of genomics and the emerging field of phenomics which have potential to bridge the huge gap between demand and supply in different agroindustrial and allied goods. In order to connect the budding researchers in the field of genetics with Mendelism and its significance, catalyzed our concentrated effort to link Mendelism across the centuries, highlighting its importance and extrapolating the concept of heredity and variation from garden peas to different life forms. In conclusion, as our knowledge on genetics deepens, more insights on underlying mechanisms and subsequent applications will be witnessed.
Keywords: Chromosome, Darwin, DNA, Evolution, Gene, Genetics, History, Mendel, Variation
Full text and supplemented materials
References
Abbott, S. and Fairbanks, D.J., Experiments on plant hybrids by Gregor Mendel, Genetics, 2016, vol. 204, no. 2, pp. 407–422. https://doi.org/10.1534/genetics.116.195198
Allen, G.E., Hugo de Vries and the reception of the “mutation theory”, J. Hist. Biol., 1969, vol. 2, pp. 55–87. https://doi.org/10.1007/BF00137268
Altenburg, E. and Muller, H.J., The genetic basis of truncate wing, —an inconstant and modifiable character in Drosophila, Genetics, 1920, vol. 5, no. 1, pp. 1–59. https://doi.org/10.1093/genetics/5.1.1
Andersson, L. and Purugganan, M., Molecular genetic variation of animals and plants under domestication, Proc. Natl. Acad. Sci. U. S. A., 2022, vol. 119, no. 30, p. e2122150119. https://doi.org/10.1073/pnas.2122150119
Arber, W. and Linn, S., DNA modification and restriction, Annu. Rev. Biochem., 1969, vol. 38, no. 1, pp. 467–500. https://doi.org/10.1146/annurev.bi.38.070169.002343
Avery, O.T., MacLeod, C.M., and McCarty, M., Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III, J. Exp. Med., 1944, vol. 79, no. 2, pp. 137–158. https://doi.org/10.1084/jem.79.2.137
Ayala, F.J.F.J., Darwin and the scientific method, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, no. 1, pp.10033–10039. https://doi.org/10.1073/pnas.0901404106
Bailey, L.H., Cross-breeding and Hybridizing: The Philosophy of the Crossing of Plants, Considered with Reference to their Improvement Under Cultivation, with a Brief Bibliography of the Subject, Ballarat: Rural Publ. Comp., 1892.
Bateson, W. and Mendel, G., Mendel’s Principles of Heredity, Massachusetts: Courier Corporation, 1902.
Book
Beadle, G.W. and Tatum, E.L., Genetic control of biochemical reactions in Neurospora, Proc. Natl. Acad. Sci. U. S. A., 1941, vol. 27, no. 11, pp. 499–506. https://doi.org/10.1073/pnas.27.11.499
Benzer, S., On the topology of the genetic fine structure, Proc. Natl. Acad. Sci. U. S. A., 1959, vol. 45, no. 11. pp. 1607–1620. https://doi.org/10.1073/pnas.45.11.1607
Berg, P., Baltimore, D., Boyer, H.W., Cohen, S.N., Davis, R.W., Hogness, D.S., Nathans, D., Roblin, R., Watson, J.D., Weissman, S., and Zinder, N.D., Potential biohazards of recombinant DNA molecules, Science, 1974, vol. 185, no. 4148, p. 303. https://doi.org/10.1126/science.185.4148.303
Berger, F., Which field of research would Gregor Mendel choose in the 21st century?, Plant Cell, 2022, vol. 34, no. 7, pp. 2462–2465. https://doi.org/10.1093/plcell/koac072
Berget, S.M., Moore, C., and Sharp, P.A., Spliced segments at the 5' terminus of adenovirus 2 late mRNA, Proc. Natl. Acad. Sci. U. S. A., 1977, vol. 74, no. 8, pp. 3171–3175. https://doi.org/10.1073/pnas.74.8.3171
Berry, A. and Browne, J., Mendel and Darwin, Proc. Natl. Acad. Sci. U. S. A., 2022, vol. 119, no. 30, p. e2122144119. https://doi.org/10.1073/pnas.2122144119
Bessman, M.J., Kornberg, A., Lehman, I.R., and Simms, E.S., Enzymic synthesis of deoxyribonucleic acid, Biochim. Biophys. Acta, 1956, vol. 21, no. 1, pp. 197–198. https://doi.org/10.1016/0006-3002(56)90127-5
Bishop, J.M., Cellular oncogenes and retroviruses, Annu. Rev. Biochem., 1983, vol. 52, pp. 301–354. https://doi.org/10.1146/annurev.bi.52.070183.001505
Blume, Y.B., Gregor Mendel and his role in the development of genetic science: to the 200th Anniversary of his birth, Bull. Natl. Acad. Sci. Ukr., 2022, vol. 11, pp. 29–38. https://doi.org/10.15407/visn2022.11.029
Boveri, T., Results on the Constitution of the Chromatic Substance of the Cell Nucleus, Jena: Gustav Fischer, 1904.
Brah, G., Animal Genetics: Concepts and Implications, Ludhiana: Kalyani, 2013.
Brennicke, A., Marchfelder, A., and Binder, S., RNA editing, FEMS. Microbiol. Rev., 1999, vol. 23, no. 3, pp. 297–316. https://doi.org/10.1111/j.1574-6976.1999.tb00401.x
Bridges, C.B., Direct proof through non-disjunction that the sex-linked genes of Drosophila are borne by the X-Chromosome, Science, 1914, vol. 40, no. 1020, pp. 107–109. https://doi.org/10.1126/science.40.1020.107
Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., and Prasher, D.C., Green fluorescent protein as a marker for gene expression, Science, 1994, vol. 263, no. 5148, pp. 802–805. https://doi.org/10.1126/science.8303295
Chargaff, E., Chemical specificity of nucleic acids and mechanism of their enzymatic degradation, Experientia, 1950, vol. 6, pp. 201–209. https://doi.org/10.1007/BF02173653
Chow, L.T., Gelinas, R.E., Broker, T.R., and Roberts, R.J., An amazing sequence arrangement at the 5' ends of adenovirus 2 messenger RNA, Cell, 1977, vol. 12, no. 1, pp. 1–8. https://doi.org/10.1016/0092-8674(77)90180-5
Collins, F.S., and Fink, L., The human genome project, Alcohol Health Res. World, 1995, vol. 19, no. 3, pp. 190–195.
Correns, C.F.J.E.G., Mendel’s regel uber das verhalten der nachkommenschaft der rassenbastarde, Ber. Dtsch. Bot. Ges., 1900, vol. 18, pp. 158–167.
Correns, C.F.J.E.G., Mendel’s law concerning the behavior of progeny of varietal hybrids, Genetics, 1950, vol. 35, no. 52, pp. 33–41.
Creighton, H.B. and McClintock, B., A correlation of cytological and genetical crossing-over in Zea mays, Proc. Natl. Acad. Sci. U. S. A., 1931, vol. 17, no. 8, pp. 492–497. https://doi.org/10.1073/pnas.17.8.492
Crick, F.H., Barnett, L., Brenner, S., and Watts-Tobin, R.J., General nature of the genetic code for proteins, Nature, 1961, vol. 192, pp. 1227–1232. https://doi.org/10.1038/1921227a0
Darwin, C., On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, London: John Murray, 1859.
Book
Darwin, C., The Variation of Animals and Plants Under Domestication, London: John Murray, 1868.
De Monet, J.B.P.A., Zoological Philosophy, an Exposition with Regard to the Natural History of Animals, London: Macmillan Publishers Ltd., 1914.
De Vries, H., Intracellular Pangenesis, Jena: G Fischer, 1889.
Book
Delaunay, L., Comparative karyological study of species Muscari Mill. and Bellevalia Lapeyr., Bull. Tiflis Bot. Gard., 1922, vol. 2, pp. 1–32.
Dobell, C., Antony van Leeuwenhoek and his “Little Animals”: being some account of the father of protozoology and bacteriology and his multifarious discoveries in these disciplines, Nature, 1932, vol. 130, no. 3288, pp. 679–680. https://doi.org/10.1038/130679a0
Dobzhansky, T., Genetic nature of species differences, Am. Nat., 1937, vol. 71, no. 735, pp. 404–420. https://doi.org/10.1086/280726
Dobzhansky, T., Mendelism, Darwinism, and evolutionis, Proc. Am. Philos. Soc., 1965, vol. 109, pp. 205–215.
Dronamraju, K., Sewall Wright (1889–1988), Jpn. J. Ge-net., 1990, vol. 65, no. 1, pp. 25–31. https://doi.org/10.1266/jjg.65.25
Dronamraju, K., A Century of Geneticists: Mutation to Medicine, Boca Raton: CRC Press, 2018.
Book
Dronamraju, K., Haldane’s last years: his life and work in India (1957–1964), Genetics, 2010, vol. 185, no. 1, pp. 5–10. https://doi.org/10.1534/genetics.110.116632
East, E.M., Mendel and his contemporaries, Sci. Mon., 1923, vol. 16, pp. 225–237.
Ellis, T.H.N., Hofer, J.M.I., Timmerman-Vaughan, G.M., Coyne, C.J., and Hellens, R.P., Mendel. 150 years on, Trends Plant Sci., 2011, vol. 16, pp. 590–596. https://doi.org/10.1016/j.tplants.2011.06.006
Fairbanks, D.J., Demystifying the mythical Mendel: a biographical review, Heredity, 2022, vol. 129, no. 1, pp. 4–11. https://doi.org/10.1038/s41437-022-00526-0
Fedor, M.J. and Williamson, J.R., The catalytic diversity of RNAs, Nat. Rev. Mol. Cell Biol., 2005, vol. 6, no. 5, pp. 399–412. https://doi.org/10.1038/nrm1647
Fisher, R.A., XV. The correlation between relatives on the supposition of Mendelian inheritance, Trans. - R. Soc. Edinburgh., 1919, vol. 52, no. 2, pp. 399–433. https://doi.org/10.1017/S0080456800012163
Fisher, R.A., The evolution of dominance in certain polymorphic species, Am. Nat., 1930a, vol. 64, no. 694, pp. 385–406. https://doi.org/10.1086/280325
Fisher, R.A., The Genetical Theory of Natural Selection, Oxford: Oxford Univ., 1930b.
Book
Fisher, R.A., Has Mendel’s work been rediscovered?, Ann. Sci., 1936, vol. 1, no. 2, pp. 115–137. https://doi.org/10.1080/00033793600200111
Focke, W.O., The Plant Hybrids: A Contribution to the Biology of Plants (Stuttgart: Borntraeger Brothers, 1881. Fraenkel-Conrat, H., and Singer, B., Virus reconstitution and the proof of the existence of genomic RNA, Philos. Trans. R. Soc., B, 1999, vol. 354, no. 1383, pp. 583–586. https://doi.org/10.1098/rstb.1999.0409
Franklin, A., Edwards, A.W.F., Fairbanks, D.J., and Hartl, D.L., Ending the Mendel-Fisher Controversy, Pittsburgh: Univ. Pittsburgh, 2008.
Book
Furth, J.J., Hurwitz, J., and Anders, M., The role of deoxyribonucleic acid in ribonucleic acid synthesis: I. The purification and properties of ribonucleic acid polymerase, J. Biol. Chem., 1962, vol. 237, pp. 2611–2619. https://doi.org/10.1016/S0021-9258(19)73796-X
Galton, F., Inquiries into Human Faculty and Its Development, London: Macmillan Publ., 1883.
Book
Gardner, E.J., Principles of Genetics, Hoboken: John Wiley & Sons, 1972.
Garrod, A., The incidence of alkaptonuria: a study in chemical individuality, Lancet, 1902, vol. 160, no. 4137, pp. 1616–1620.
Gartler, S.M., The chromosome number in humans: a brief history, Nat. Rev. Genet., 2006, vol. 7, no. 8, pp. 655–660. https://doi.org/10.1038/nrg1917
Gayon, J., From Mendel to epigenetics: History of genetics, C. R. Biol., 2016, vol. 339, nos. 7–8. pp. 225–230. https://doi.org/10.1016/j.crvi.2016.05.009
Gest, H., Homage to Robert Hooke (1635–1703): new insights from the recently discovered Hooke Folio, Perspect. Biol. Med., 2009, vol. 52, no. 3, pp. 392–399. https://doi.org/10.1353/pbm.0.0096
Gibson, D.G., Glass, J.I., Lartigue, C., Noskov, V.N., Chuang, R.-Yu., Algire, M.A., Benders, G.A., Montague, M.G., Ma, Li, Moodie, M.M., Merryman, Ch., Vashee, S., Krishnakumar, R., Assad-Garcia, N., Andrews-Pfannkoch, C., Denisova, E.A., Young, L., Qi, Zh.-Q., Segall-Shapiro, T.H., Calvey, C.H., Parmar, P.P., Hutchison, C.A., Smith, H.O., and Venter, J., Creation of a bacterial cell controlled by a chemically synthesized genome, Science, 2010, vol. 329, no. 5987, pp. 52–56. https://doi.org/10.1126/science.1190719
Gilbert, W., Origin of life: The RNA world, Nature, 1986, vol. 319, pp. 618–618. https://doi.org/10.1038/319618a0
Griffith, F., The significance of pneumococcal types, Epidemiol. Infect., 1928, vol. 27, no. 2, pp. 113–159.
Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., and Altman, S., The RNA moiety of ribonuclease p is the catalytic subunit of the enzyme, Cell, 1983, vol. 35, no. 3, pp. 849–857. https://doi.org/10.1016/0092-8674(83)90117-4
Haldane, J.B.S., A mathematical theory of natural and artificial selection. Part IX. Rapid selection, Math. Proc. Camb. Philos. Soc., 1932, vol. 28, no. 2, pp. 244–248.
Haldane, J.B.S., The Causes of Evolution, Princeton: Princeton Univ., 1949.
Haldane, J.B.S., The cost of natural selection, J. Genet., 1957, vol. 55, no. 3, pp. 511–524. https://doi.org/ 725https://doi.org/10.1007/BF02984069
Hales, K.G., Korey, C.A., Larracuente, A.M., and Roberts, D.M., Genetics on the fly: a primer on the drosophila model system, Genetics, 2015, vol. 201, no. 3, pp. 815–842. https://doi.org/10.1534/genetics.115.183392728
Hershey, A.D. and Chase, M., Independent functions of viral protein and nucleic acid in growth of bacteriophage, J. Gen. Physiol., 1952, vol. 36, no. 1, pp. 39–56. https://doi.org/10.1085/jgp.36.1.39
Hoagland, M.B., Stephenson, M.L., Scott, J.F., Hecht, L.I., and Zamecnik, P.C., A soluble ribonucleic acid intermediate in protein synthesis, J. Biol. Chem., 1958, vol. 231, no. 1, pp. 241–257. https://doi.org/10.1016/S0021-9258(19)77302-5
Holley, R.W., Everett, G.A., Madison, J.T., and Zamir, A., Nucleotide sequences in the yeast alanine transfer ribonucleic acid, J. Biol. Chem., 1965, vol. 240, pp. 2122–2128. https://doi.org/10.1016/S0021-9258(18)97435-1
Hou, J., Sigwalt, A., Fournier, T., Pflieger, D., Peter, J., de Montigny, J., Dunham, M.J., and Schacherer, J., The hidden complexity of mendelian traits across natural yeast populations, Cell Rep., 2016, vol. 16, no. 4, pp. 1106–1114. https://doi.org/10.1016/j.celrep.2016.06.048
Howard, J.C., Why didn’t Darwin discover Mendel’s laws?, J. Biol., 2009, vol. 8, no. 2, p. 15. https://doi.org/10.1186/jbiol123
Hsu, T.C., Mammalian chromosomes in vitro: I. The karyotype of man, J. Hered., 1952, vol. 43, no. 4, pp.167–172.
Huminiecki, Ł., A contemporary message from Mendel’s logical empiricism, BioEssays, 2020, vol. 42, no. 9, p. e2000120. https://doi.org/10.1002/bies.202000120
Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., and Nakata, A., Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product, J. Bacteriol., 1987, vol. 169, no. 12, pp. 5429–5433. https://doi.org/10.1128/jb.169.12.5429-5433.1987
Jacob, F. and Monod, J., Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol., 1961, vol. 3, pp. 318–356.
Jenkin, F., The origin of species, N. Br. Rev., 1867, vol. 46, pp. 277–318.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E., A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity, Science, 2012, vol. 337, no. 6096, pp. 816–821. https://doi.org/10.1126/science.1225829
Johannsen, W., The genotype conception of heredity, Am. Nat., 1911, vol. 45, no. 531, pp. 129–159.
Kanaka, K.K., Nidhi Sukhija, Rangasai Chandra Goli, Sanjeev Singh, Indrajit Ganguly, Dixit, S.P., Aishwarya Dash, and Anoop Anand Malik, On the concepts and measures of diversity in the genomics era, Curr. Plant Biol., 2023, vol. 33, p. 100278. https://doi.org/10.1016/j.cpb.2023.100278
Karikó, K., Buckstein, M., Ni, H., and Weissman, D., Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA, Immunity, 2005, vol. 23, no. 2, pp. 165–175. https://doi.org/10.1016/j.immuni.2005.06.008
Kimura, M., Process leading to quasi-fixation of genes in natural populations due to random fluctuation of selection intensities, Genetics, 1954, vol. 39, no. 3, pp. 280–295. https://doi.org/10.1093/genetics/39.3.280
Kimura, M., Rare variant alleles in the light of the neutral theory, Mol. Biol. Evol., 1983, vol. 1, no. 1, pp. 84–93. https://doi.org/10.1093/oxfordjournals.molbev.a040305
Kreplak, J., Madoui, M.A., Cápal, P., et al., A reference genome for pea provides insight into legume genome evolution, Nat. Genet., 2019, vol. 51, no. 9, pp. 1411–1422. https://doi.org/10.1038/s41588-019-0480-1
Kruger, K., Grabowski, P.J., Zaug, A.J., Sands, J., Gottschling, D.E., and Cech, T.R., Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena, Cell, 1982, vol. 31, no. 1, pp. 147–157. https://doi.org/10.1016/0092-8674(82)90414-7
Lederberg, J. and Tatum, E.L., Gene recombination in Escherichia coli, Nature, 1946, vol. 158, no. 4016, p. 558. https://doi.org/10.1038/158558a0
Lee, R.C., Feinbaum, R.L., and Ambros, V., The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, 1993, vol. 75, no. 5, pp. 843–854. https://doi.org/10.1016/0092-8674(93)90529-y
Leroi, A.M., The Lagoon: How Aristotle Invented Science, London: Bloomsbury, 2014.
Levene, P.A., The structure of yeast nucleic acid: IV, J. Bio-l. Chem., 1919, vol. 40, pp. 415–424. https://doi.org/10.1016/S0021-9258(18)87254-4
Lockhart, D.J., Dong, H., Byrne, M.C., et al., Expression monitoring by hybridization to high-density oligonucleotide arrays, Nat. Biotechnol., 1996, vol. 14, no. 13, pp. 1675–1680. https://doi.org/10.1038/nbt1296-1675
MacRoberts, M.H., L. H. Bailey’s citations to Gregor Mendel, J. Hered., 1984, vol. 75, no. 6, pp. 500–501. https://doi.org/10.1093/oxfordjournals.jhered.a109997
Maton, A., Cells: Building Blocks of Life, Hoboken: Prentice Hall, 1994.
Maxam, A.M. and Gilbert, W., A new method for sequencing DNA, Proc. Natl. Acad. Sci. U. S. A., 1977, vol. 74, no. 2, pp. 560–564. https://doi.org/10.1073/pnas.74.2.560
Mayr, E., Birds Collected during the Whitney South Sea Expedition. 48, Notes on the Polynesian Species of Aplonis, New York: Am. Mus. Nat. Hist., 1942.
Mayr, E., Systematics and the Origin of Species, from the Viewpoint of a Zoologist, Cambridge: Harvard Univ., 1959.
McClintock, B., The origin and behavior of mutable loci in maize, Proc. Natl. Acad. Sci. U. S. A., 1950, vol. 36, no. 6, pp. 344–355. https://doi.org/10.1073/pnas.36.6.344
Meissner, F., Geddes-McAlister, J., Mann, M., and Bantscheff, M., The emerging role of mass spectrometry-based proteomics in drug discovery, Nat. Rev. Drug Discovery, 2022, vol. 21, no. 9, pp. 637–654. https://doi.org/10.1038/s41573-022-00409-3
Mendel, G., Experiments in plant hybridization, Verh. Naturforsch. Ver. Brünn, 1865. https://www.mendelweb.org/Mendel.html. Accessed December 25, 2022.
Meselson, M. and Stahl, F.W., The replication of DNA in Escherichia coli, Proc. Natl. Acad. Sci. U. S. A., 1958, vol. 44, no. 7, pp. 671–682. https://doi.org/10.1073/pnas.44.7.671
Mittelsten Scheid, O., Mendelian and non-mendelian genetics in model plants, Plant Cell, 2022, vol. 34, no. 7, pp. 2455–2461. https://doi.org/10.1093/plcell/koac070
Morgan, T.H., Random segregation versus coupling in mendelian inheritance, Science, 1911, vol. 34, no. 873, pp. 384–384. https://doi.org/10.1126/science.34.873.384
Morgan, T.H., Bridges, C.B., and Sturtevant, A.H., The Genetics of Drosophila Melanogaster, Biblphia Genet., 1925, vol. 2, Chapter XXII.
Muller, H.J., Artificial transmutation of the gene, Science, 1927, vol. 66, no. 1699, pp. 84–87. https://doi.org/10.1126/science.66.1699.84
Mullis, K.B., The unusual origin of the polymerase chain reaction, Sci. Am., 1990, vol. 262, no. 4, pp. 56–65. https://doi.org/10.1038/scientificamerican0490-56
Nielsen, R., Molecular signatures of natural selection, Annu. Rev. Genet., 2005, vol. 39, pp. 197–218. https://doi.org/10.1146/annurev.genet.39.073003.112420
Noble, C., Olejarz, J., Esvel, K.M., Church, G.M., and Nowak, M.A., Evolutionary dynamics of CRISPR gene drives, Sci. Adv., 2017, vol. 3, no. 4, p. e1601964. https://doi.org/10.1126/sciadv.1601964
Nogler, G.A., The lesser-known Mendel: his experiments on Hieracium, Genetics, 2006, vol. 172, no. 1, pp. 1–6. https://doi.org/10.1093/genetics/172.1.1
Novitski, E. and Blixt, S., Mendel, linkage, and synteny, BioScience, 1978, vol. 28, no. 1, pp. 34–35. https://doi.org/10.2307/1307484
Pääbo, S., Poinar, H., Serre, D., Jaenicke-Després, V., Hebler, J., Rohland, N., Kuch, M., Krause, J., Vigilant, L., and Hofreiter, M., Genetic analyses from ancient DNA, Annu. Rev. Genet., 2004, vol. 38, pp. 645–679. https://doi.org/10.1146/annurev.genet.37.110801.143214
Panet, A., Baltimore, D., and Hanafusa, T., Quantitation of avian RNA tumor virus reverse transcriptase by radioimmunoassay, J. Virol., 1975, vol. 16, no. 1, pp. 146–152. https://doi.org/10.1128/JVI.16.1.146-152.1975
Pantel, K. and Alix-Panabières, C., Circulating tumour cells in cancer patients: challenges and perspectives, Trends Mol. Med., 2010, vol. 16, no. 9, pp. 398–406. https://doi.org/10.1016/j.molmed.2010.07.001
Pardue, M.L., and Gall, J.G., Molecular hybridization of radioactive DNA to the DNA of cytological preparations, Proc. Natl. Acad. Sci. U. S. A., 1969, vol. 64, pp. 600–604.
Paweletz, N., Walther Flemming: pioneer of mitosis research, Nat. Rev. Mol. Cell Biol., 2001, vol. 2, no. 1, pp. 72–75. https://doi.org/10.1038/35048077
Piegorsch, W.W., The Gregor Mendel controversy: early issues of goodness-of-fit and recent issues of genetic linkage, Hist. Sci., 1986, vol. 24, pp. 173–182. https://doi.org/10.1177/007327538602400204
Poczai, P. and Santiago-Blay, J.A., Principles and biological concepts of heredity before Mendel, Biol. Direct, 2021, vol. 16, no. 1, p. 19. https://doi.org/10.1186/s13062-021-00308-4
Radick, G., Beyond the “Mendel-Fisher controversy”, Science, 2015, vol. 350, no. 6257, pp. 159–160. https://doi.org/10.1126/science.aab3846
Radick, G., Mendel the fraud? A social history of truth in genetics, Stud. Hist. Philos. Sci., 2022, vol. 93, pp. 39–46. https://doi.org/10.1016/j.shpsa.2021.12.012
Reid, J.B. and Ross, J.J., Mendel’s genes: toward a full molecular characterization, Genetics, 2011, vol. 189, no. 1, pp. 3–10. https://doi.org/10.1534/genetics.111.132118
Rich, A. and Zhang, S., Z-DNA: the long road to biological function, Nat. Rev. Genet., 2003, vol. 4, no. 7, pp. 566–572. https://doi.org/10.1038/nrg1115
Rode, N.O., Estoup, A., Bourguet, D., Courtier-Orgogozo, V., and Débarre, F., Population management using gene drive: molecular design, models of spread dynamics and assessment of ecological risks, Conserv. Genet., 2019, vol. 20, no. 4, pp. 671–690. https://doi.org/10.1007/s10592-019-01165-5856
Sahin, U., Muik, A., Derhovanessian, E., et al., COVID-19 vaccine BNT162b1 elicits human antibody and TH1T cell responses, Nature, 2020, vol. 586, no. 7830, pp. 594–599. https://doi.org/10.1038/s41586-020-2814-7
Sanger, F., Nicklen, S., and Coulson, A.R., DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. U. S. A., 1977, vol. 74, no. 12, pp. 5463–5467. https://doi.org/10.1073/pnas.74.12.5463
Scherrer, K. and Jost, J., Gene and genon concept: coding versus regulation, Theor. Biosci., 2007, vol. 126, pp. 65–113. https://doi.org/10.1007/s12064-007-0012-x
Schwann, T.H., Microscopical Researches into the Accordance in the Structure and Growth of Animals and Plants, Moscow: Ripol Classic, 1847.
Book
Searle, J.B. and de Villena, F.P.-M., The evolutionary significance of meiotic drive, Heredity, 2022, vol. 129, no. 1, pp. 44–47. https://doi.org/10.1038/s41437-022-00534-0
Secord, J.A., Nature’s fancy: Charles Darwin and the breeding of pigeons, Isis, 1981, vol. 72, pp. 163–186. https://doi.org/10.1086/352717
Simpson, G.G., Tempo and Mode in Evolution (No. 15), New York: Columbia Univ., 1944.
Smith, H.O. and Wilcox, K.W., A Restriction enzyme from Hemophilus influenzae: I. Purification and general Properties, J. Mol. Biol., 1970, vol. 51, no. 2, pp. 379–391. https://doi.org/10.1016/0022-2836(70)90149-x
Smýkal, P., Pea (Pisum sativum L.) in biology prior and after Mendel’s discovery, Czech J. Genet. Plant Breed., 2014, vol. 50, pp. 52–64. https://doi.org/10.17221/2/2014-CJGPB
Smýkal, P., Varshney, R.K., Singh, V.K., Coyne, C.J., Domoney, C., Kejnovský, E., and Warkentin, T., From Mendel’s discovery on pea to today’s plant genetics and breeding: commemorating the 150th anniversary of the reading of Mendel’s discovery, Theor. Appl. Genet., 2016, vol. 129, no. 12, pp. 2267–2280. https://doi.org/10.1007/s00122-016-2803-2
Stenseth, N.C., Andersson, L., and Hoekstra, H.E., Gregor Johann Mendel and the development of modern evolutionary biology, Proc. Natl. Acad. Sci. U. S. A., 2022, vol. 119, no. 30. p. e2201327119. https://doi.org/10.1073/pnas.2201327119
Sturtevant, A.H., The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association, J. Exp. Zool., 1913, vol. 14, no.1, pp. 43–59. https://doi.org/10.1002/jez.1400140104
Sussmilch, F.C., Ross, J.J., and Reid, J.B., Mendel: from genes to genome, Plant Physiol., 2022, vol. 190, pp. 2103–2114. https://doi.org/10.1093/plphys/kiac424
Sutton, W.S., The chromosomes in heredity, Biol. Bull., 1903, vol. 4, no. 5, pp. 231–250. https://doi.org/10.2307/1535741
Temin, H.M., Homology between RNA from Rous sarcoma virus and DNA from Rous sarcoma virus-infected cells, Proc. Natl. Acad. Sci. U. S. A., 1964, vol. 52, no. 2, pp. 323–329. https://doi.org/10.1073/pnas.52.2.323
Tijo, J.H. and Levan, A., Human chromosomes, Hereditas, 1956, vol. 42, pp. 1–6.
Tonegawa, S., Somatic generation of antibody diversity, Nature, 1983, vol. 302, no. 5909, pp. 575–581. https://doi.org/10.1038/302575a0
Tschermak, E., Über künstliche kreuzung bei Pisum sativum, Ber. Dtsch. Bot. Ges., 1900, vol. 18, pp. 232–239.
Van Dijk, P.J., Jessop, A.P., and Ellis, T.H.N., How did Mendel arrive at his discoveries?, Nat. Genet., 2022, vol. 54, no. 7, pp. 926–933. https://doi.org/10.1038/s41588-022-01109-9
Vecerek, O., Johann Gregor Mendel as a beekeeper, Bee World, 1965, vol. 46, no. 3, pp. 86–96. https://doi.org/10.1080/0005772X.1965.11095345
Virchow, R., Cellular Pathology, London: J & A Churchill, 1860.
Volkov, R.A. and Rudenko, S.S., War and world of Erwin Chargaff (Dedicated to 110th anniversary of birth), Cyto-l. Genet., 2016, vol. 50, pp. 72–78. https://doi.org/10.3103/S0095452716010102
Waddington, C.H., The Epigenotype, Endeavour, 1942, vol. 1, pp. 18–20.
Wallace, A.R., On the law which has regulated the introduction of new species, Ann. Mag. Nat. Hist., 1855, vol. 16, no. 93, pp. 184–196.
Weeden, N.F., Are Mendel’s data reliable? The perspective of a Pea geneticist, J. Hered., 2016, vol. 107, no. 7, pp. 635–646. https://doi.org/10.1093/jhered/esw058
Weiling, F., What about R. A. Fisher’s statement of the “too good” data of J. G. Mendel’s Pisum paper?, J. Hered., 1986, vol. 77, no. 4, pp. 281–283. https://doi.org/10.1093/oxfordjournals.jhered.a110239
Weldon, W.F.R., Mendel’s laws of alternative inheritance in peas, Biometrika, 1902, vol. 1, pp. 228–233. https://doi.org/10.1093/biomet/1.2.228
Whittaker, C. and Dean, C., The FLC locus: A Platform for discoveries in epigenetics and adaptation, Ann. Rev. Cell Dev. Biol., 2017, vol. 33, pp. 555–575. https://doi.org/10.1146/annurev-cellbio-100616-060546
Wolf, J.B., Ferguson-Smith, A.C., and Lorenz, A., Mendel’s laws of heredity on his 200th birthday: What have we learned by considering exceptions?, Heredity, 2022, vol. 129, no. 1, pp. 1–3. https://doi.org/10.1038/s41437-022-00552-y
Wright, S., Evolution in Mendelian populations, Genetics, 1931, vol. 16, no. 2, pp. 97–159. https://doi.org/10.1093/genetics/16.2.97
Wright, S., The roles of mutation, inbreeding, crossbreeding, and selection in evolution, Proceedings of the Sixth International Congress on Genetics, 1932, pp. 356–366.
Wright, S., Dispersion of Drosophila pseudoobscura, Am. Nat., 1968, vol. 102, no. 923, pp. 81–84.
Yasashimoto, T., Sakata, M.K., Sakita, T., Nakajima, S., Ozaki, M., and Minamoto, T., Environmental DNA detection of an invasive ant species (Linepithema humile) from soil samples, Sci. Rep., 2021, vol. 11, no. 1, p. 10712. https://doi.org/10.1038/s41598-021-89993-9
Zinder, N.D. and Lederberg, J., Genetic exchange in Salmonella, J. Bacteriol., 1952, vol. 64, no. 5, pp. 679–699. https://doi.org/10.1128/jb.64.5.679-699.1952