SUMMARY. The genetic diversity of the marsh frog Pelophylax ridibundus populations and the hemiclonal structure of the hybrid form Pelophylax esculentus-ridibundus within the drainages of Prypiat, Dniester and Southern Buh rivers were analyzed. The absence of a single evolutionary scenario for this hybrid form within the borders of the region has been revealed. The conservation of the basic level of parental species evolutionary potential and the interpopulation differention of the hybrid form within the drainages of Dniester and Southern Buh rivers was demonstrated. At the same time, in the populations of P. esculentus-ridibundus from the Prypiat basin, a loss of evolutionary potential was revealed (in the southern part by 31 %, in the northern part by 69 %). It was revealed that the reason for this was the tendency to the extinction of rare haplotypes and the expansion of the mass ones. It was also demonstrated that there was a significant increase (9–10 times) in the interpopulation differentiation of the hybrid form from the Prypiat river drainage compared with sympatric populations of the parental species P. ridibundus. It was shown that the evolutionary potential loss of the hybrid form P. esculentus-ridibundus accelerated in the absence of parental species, which confirms the hypothesis about regular hybridization as an effective mechanism to compensate for the loss of evolutionary potential.
Keywords: Pelophylax, hybrid form, hemiclonal inheritance, evolutionary potential, loss of genetic diversity
Full text and supplemented materials
References
Adamson, K., Laas, M., Blumenstein, K., Busskamp, J., Langer, G.J., Klavina, D., Kaur, A., Maaten, T., Mullett, M.S., Müller, M.M., Ondrušková, E., Padari, A., Pilt, E., Riit, T., Solheim, H., Soonvald, L., Tedersoo, L., Terhonen, E., and Drenkhan, R., Highly clonal structure and abundance of one haplotype characterise the Diplodia sapinea populations in Europe and Western Asia, J. Fungi, 2021, vol. 7, no. 8, p. 634. https://doi.org/10.3390/jof7080634
De Russo Godoy, F.M., Lenzi, M., Dos Santos Ferreira, B.H., Da Silva, L.V., Zanella, C.M., and Paggi, G.M., High genetic diversity and moderate genetic structure in the self-incompatible, clonal Bromelia hieronymi (Bromeliaceae), Bot. J. Linn. Soc., 2018, vol. 187, no. 4, pp. 672–688. https://doi.org/10.1093/botlinnean/boy037
Ficetola, G.F., Padoa-Schioppa, E., Wang, J., and Garner, T.W.J., Polygyny, census and effective population size in the threatened frog, Rana latastei, Anim. Conserv., 2010, vol. 13, pp. 82–89. https://doi.org/10.1111/j.1469-1795.2009.00306.x
Hodač, L., Klatt, S., Hojsgaard, D., Sharbel, T.F., and Hörandl, E., A little bit of sex prevents mutation accumulation even in apomictic polyploid plants, BMC Evol. Biol., 2019, vol. 19, p. 170. https://doi.org/10.1186/s12862-019-1495-z
Hoffman, E.A., Schueler, F.W., and Blouin, M.S., Effective population sizes and temporal stability of genetic structure in Rana pipiens, the northern leopard frog, Evolution, 2004, vol. 58, no. 11, pp. 2536-2545. https://doi.org/10.1111/j.0014-3820.2004.tb00882.x
Hotz, H., Guex, G.D., Beerli, P., Semlitsch, R.D., and Pruvost, N.B.M., Hemiclone diversity in the hybridogenetic frog Rana esculenta outside the area of clone formation: the view from protein electrophoresis, J. Zool. Syst. Evol. Res., 2008, vol. 46, no. 1, pp. 56–62. https://doi.org/10.1111/j.1439-0469.2007.00430.x
Janko, K., Drozd, P., and Eisner, J., Do clones degenerate over time? Explaining the genetic variability of asexuals through population genetic models, Biol. Direct, 2011, vol. 6, p. 17. https://doi.org/10.1186/1745-6150-6-17
Jokela, J., Dybdahl, M.F., and Lively, C.M., The maintenance of sex, clonal dynamics, and host-parasite coevolution in a mixed population of sexual and asexual snails, Am. Nat., 2009, vol. 174, pp. 43–53. https://doi.org/10.1086/599080
Kočí, J., Röslein, J., Pačes, J., Kotusz, J., Halačka, K., Koščo, J., Fedorčák, J., Iakovenko, N., and Janko, K., No evidence for accumulation of deleterious mutations and fitness degradation in clonal fish hybrids: Abandoning sex without regrets, Mol. Ecol., 2020, vol. 29, no. 16, pp. 3038–3055. https://doi.org/10.1111/mec.15539
Lakin, G.F., Biometriya: uchebnoe posobie dlya biologicheskikh spetsial’nostei vuzov (Biometrics. Textbook for Biology Specialist of Universities), Moscow: Higher School, 1990.
Lande, R. and Berrouklaf, Dzh., Effective population size, genetic variation and their use for population management, in Zhiznesposobnost’ populyatsiy: Prirodookhrannyye aspekty (Viability of Populations: Conservation Aspects), Suleya, M., Ed., Moscow: Mir,1989, pp. 117–157.
Mehmood, Y., Sambasivam, P., Kaur, S., Davidson, J., Leo, A.E., Hobson, K., Linde, C.C., Moore, K., Brownlie, J., and Ford, R., Evidence and consequence of a highly adapted clonal haplotype within the Australian Ascochyta rabiei population, Front. Plant Sci., 2017, vol. 8, p. 1029. https://doi.org/10.3389/fpls.2017.01029
Morales-Hojas, R., Gonzalez-Uriarte, A., Alvira Irai-zoz, F., Jenkins, T., Alderson, L., Kruger, T., Hall, M.J., Greenslade, A., Shortall, C.R., and Bell, J.R., Population genetic structure and predominance of cyclical parthenogenesis in the bird cherry-oat aphid Rhopalosiphum padi in England, Evol. Appl., 2020, vol. 13, no. 5, pp. 1009–1025. https://doi.org/10.1111/eva.12917
Morozov-Leonov, S.Y., Hemiclone diversity in the hybrid form Pelophylax esculentus-ridibundus (Amphibia, Ranidae) from the Tisa river drainage, Cytol. Genet., 2017, vol. 51, pp. 470–477. https://doi.org/10.3103/S0095452717060093
Morozov-Leonov, S.Y., Hemiclone diversity in the hybrid form Pelophylax esculentus-ridibundus (Amphibia, Ranidae) from the Prypyat, Dnestr, and Southern Boug River Basins, Cytol. Genet., 2019, vol. 53, pp. 49–59. https://doi.org/10.3103/S0095452719010092
Mutnale, M.C., Anand, S., Eluvathingal, L.M., Roy, J.K., Reddy, G.S., and Vasudevan, K., Enzootic frog pathogen Batrachochytrium dendrobatidis in Asian tropics reveals high ITS haplotype diversity and low prevalence, Sci. Rep., 2018, vol. 8, p. 10125. https://doi.org/10.1038/s41598-018-28304-1
Nei, M. and Roychoudhury, A.K., Sampling variances of heterozygosity and genetic distance, Genetics, 1974, vol. 74, pp. 379–390. https://doi.org/10.1093/genetics/76.2.379
Neiman, M., Meirmans, S., and Meirmans, P.G., What can asexual lineage age tell us about the maintenance of sex?, Ann. N. Y. Acad. Sci., 2009, vol. 1168, pp. 185–200. https://doi.org/10.1111/j.1749-6632.2009.04572.x
Phillipsen, I.C., Funk, W.C., Hoffman, E.A., Monsen, K.J., and Blouin, M.S., Comparative analyses of effective population size within and among species: ranid frogs as a case study, Evolution, 2011, vol. 65, no. 10, pp. 2927–2945. https://doi.org/10.1111/j.1558-5646.2011.01356.x
Vorburger, Ch., Fixation of deleterious mutations in clonal lineages: evidence from hybridogenetic frogs, Evolution, 2001, vol. 55, no. 11, pp. 2319–2332. https://doi.org/10.1111/j.0014-3820.2001.tb00745.x
Vrijenhoek, R.C., Angus, R.A., and Schultz, R.J., Variation and heterozygosity in sexually vs. clonally reproducing populations of Poeciliopsis, Evolution, 1977, vol. 31, no. 4, pp. 767–781. https://doi.org/10.2307/2407438
Warren, W.C., García-Pérez, R., Xu, S., Lampert, K.P., Chalopin, D., Stöck, M., Loewe, L., Lu, Y., Kuder-na, L., Minx, P., Montague, M.J., Tomlinson, C., Hillier, L.W., Murphy, D.N., Wang, J., Wang, Z., Garcia, C.M., Thomas, G.C.W., Volff, J.N., Farias, F., Aken, B., Walter, R.B., Pruitt, K.D., Marques-Bonet, T., Hahn, M.W., Kneitz, S., Lynch, M., and Schartl, M., Clonal polymorphism and high heterozygosity in the celibate genome of the Amazon molly, Nat. Ecol. Evol., 2018, vol. 2, pp. 669–679. https://doi.org/10.1038/s41559-018-0473-y
Xu, S., Huynh, T.V., and Snyman, M., The transcriptomic signature of obligate parthenogenesis, Heredity, 2022, vol. 128, pp. 132–138. https://doi.org/10.1038/s41437-022-00498-1
Yin, M., Petrusek, A., Seda, J., and Wolinska, J., Fine-scale temporal and spatial variation of taxon and clonal structure in the Daphnia longispina hybrid complex in heterogeneous environments, BMC Evol. Biol., 2012, vol. 12, p. 12. https://doi.org/10.1186/1471-2148-12-12