TSitologiya i Genetika 2023, vol. 57, no. 4, 39-41
Cytology and Genetics 2023, vol. 57, no. 4, 335–346, doi: https://www.doi.org/https://doi.org/10.3103/S0095452723040084

Comparative analysis of the complete mitochondrial genome sequence of an alpine plant Triosteum pinnatifidum

Liu H., Liu W., Xiao Q., Zhou Q., Li X., Yao Z., Wang A., Gao Q., Chen S.

  1. State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810008, China
  2. College of Eco­Environmental Engineering, Qinghai University, Xining 810008, China
  3. Department of Geological Engineering, Qinghai University, Xining 810016, Qinghai, China
  4. Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, Qinghai, China

In this study, the complete mitochondrial genome (mt genome) of Triosteum pinnatifidum was investigated for the first time. The mt genome consisted of 803,609 bp, comprised of 62 genes including 19 tRNA genes, 3 rRNA genes and 40 protein­coding genes. We detected protein­coding genes and codon usage, RNA editing sites and repeat sequences. The protein­coding genes substitution rates and DNA segments migration were generated, the comparison of six species genomic features was performed. The phylogenetic analysis of 32 species was also taken. A total of 463 RNA editing sites were found in 40 protein­coding genes. Being slightly positive, the GC­skew and AT­skew were 0.0060 and 0.0004, respectively. Most of PCGs had Ka/Ks ratio less than 1, indicating the existence of purifying or negative selection in these genes. This is the first report of the mt genome in the Caprifoliaceae family and could provide a useful foundation for evolutionary analysis, molecular biology and taxonomy in genus Triosteum and other higher plants.

Keywords: mitochondrial genome; Triosteum pinnatifidum; structure and evolution characteristics; phylogeny

TSitologiya i Genetika
2023, vol. 57, no. 4, 39-41

Current Issue
Cytology and Genetics
2023, vol. 57, no. 4, 335–346,
doi: https://doi.org/10.3103/S0095452723040084

Full text and supplemented materials

References

Altschul, S.F., Gish, W., Miller, W., Lipman, D.J., et al., Basic local alignment search tool, J. Mol. Biol., 1990, vol. 215, pp. 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Au, K.F., Underwood, J.G., Lee, L., and Wong, W.H., Improving PacBio long read accuracy by short read alignment, PLoS One, 2012, vol. 7, pp. e46679. https://doi.org/10.1371/journal.pone.0046679

Baha, V.S., Behloul, N., Liu, Z.Z., Meng, J.H., et al., Comprehensive analysis of genetic and evolutionary features of the hepatitis E virus, BMC Genomics, 2019, vol. 20, p. 790. https://doi.org/10.1186/s12864-019-6100-8

Basse, C.W., Mitochondrial inheritance in fungi, Curr. Opin. Microbiol., 2010, vol. 13, pp. 712–719. https://doi.org/10.1016/j.mib.2010.09.003

Bell, C.D. and Donoghue, M.J., Dating the Dipsacales: comparing models, genes, and evolutionary implications, Am. J. Bot., 2005, vol. 92, pp. 284–296. https://doi.org/10.3732/ajb.92.2.284

Benson, G., Tandem repeats finder: a program to analyze DNA sequences, Nucleic Acids Res., 1999, vol. 27, pp. 573–580. https://doi.org/10.1093/nar/27.2.573

Bi, C.W., Paterson, A.H., Wang, X.L., Ye, N., et al., Analysis of the complete mitochondrial genome sequence of the diploid cotton Gossypium raimondii by comparative genomics approaches, BioMed Res. Int., 2016, vol. 18, pp. 2314–6133. https://doi.org/10.1155/2016/5040598

Caccone A., Gentile G., Burns C.E., Powell J.R., et al. Extreme difference in rate of mitochondrial and nuclear DNA evolution in a large ectotherm, Galápagos tortoises, Mol. Phylogenet. Evol., 2004, vol. 31, pp. 794–798. https://doi.org/10.1016/j.ympev.2004.02.004

Chai, X., Su, Y.F., Yan, S.L., and Huang, X., Chemical constituents of the roots of Triosteum pinnatifidum, Chem. Nat. Comp., 2014, vol. 50, pp. 1149–1152. https://doi.org/10.1007/s10600-014-1188-1

Chai, X., Su, Y.F., Zheng, Y.H., Yan, S.L., Zhang, X., and Gao, X.M., Iridoids from the roots of Triosteum pinnatifidum, Biochem. Syst. Ecol., 2010, vol. 38, pp. 210–212. https://doi.org/10.1016/j.bse.2009.12.037

Chang, S.X., Wang, Y.K., Lu, J.J., Zhao, T.J., et al., The Mitochondrial genome of soybean reveals complex genome structures and gene evolution at intercellular and phylogenetic levels, PLoS One, 2013, vol. 8, p. e56502. https://doi.org/10.1371/journal.pone.0056502

Chen, S., Zhou, Y.Q., Chen, Y., and Gu, J., fastp: an ultra-fast all-in-one FASTQ preprocessor, Bioinformatics, 2018, vol. 34, pp. i884–i890. https://doi.org/10.1093/bioinformatics/bty560

Cheng, Y., He, X.X., Priyadarshani, S.V.G.N., Wang, Y., et al., Assembly and comparative analysis of the complete mitochondrial genome of Suaeda glauca, BMC Genomics, 2021, vol. 22, pp. 167. https://doi.org/10.1186/s12864-021-07490-9

Cui, H.N., Ding, Z., Zhu, Q.L., Gao, P., et al., Comparative analysis of nuclear, chloroplast, and mitochondrial genomes of watermelon and melon provides evidence of gene transfer, Sci. Rep., 2021, vol. 11, p. 1595. https://doi.org/10.1038/s41598-020-80149-9

Darriba, D., Taboada, G.L., Doallo, R., and Posada, D., jModel Test 2: more models, new heuristics and parallel computing, Nat. Methods, 2012, vol. 9, p. 772. https://doi.org/10.1038/nmeth.2109

Gould, K.R. and Donoghue, M.J., Phylogeny and biogeography of Triosteum (Caprifoliaceae), Harv. Pap. Bot., 2000, vol. 5, pp. 157–166. https://doi.org/10.2307/41761600

Greiner, S., Lehwark, P., and Bock, R., Organellar Genome DRAW (OGDRAW) version1.3.1: expanded toolkit for the graphical visualization of organellar genomes, Nucleic Acids Res., 2019, vol. 47, pp. W59–W64. https://doi.org/10.1101/545509

Hausner, G., 6-fungal mitochondrial genomes, plasmids and introns, Appl. Mycol. Biotechnol., 2003, vol. 3, pp. 101–131. https://doi.org/10.1016/S1874-5334(03)80009-6

Huang, Z., Jin, S.H., Guo, H.D., Chen, Q.B., et al., Genome-wide identification and characterization of TIFY family genes in Moso Bamboo (Phyllostachys edulis) and expression profiling analysis under dehydration and cold stresses, PeerJ, 2016, vol. 4, p. e2620. https://doi.org/10.7717/peerj.2620

Kan, S.L., Shen, T.T., Gong, P.P., Wang, X.Q., et al., The complete mitochondrial genome of Taxus cuspidate (Taxaceae) eight protein coding genes have transferred to the nuclear genome, BMC Evol. Biol., 2020, vol. 20, p. 10. https://doi.org/10.1186/s12862-020-1582-1

Knoop, V., The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective, Curr. Genet., 2004, vol. 46, pp. 123–139. https://doi.org/10.1007/s00294-004-0522-8

Koren, S., Walenz, B.P., Berlin, K., Phillippy, A.M., et al., Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation, Genome Res., 2017, vol. 27, pp. 722–736. https://doi.org/10.1101/gr.215087.116

Lenz, H., Rüdinger, M., Volkmar, U., Knoop, V., et al. Introducing the plant RNA editing prediction and analysis computer tool PREPACT and an update on RNA editing site nomenclature, Curr. Genet., 2010, vol. 56, pp. 189–201. https://doi.org/10.1007/s00294-009-0283-5

Liu, H.R., Gao, Q.B., Zhang, F.Q., Chen, S.L., et al., Gnentic diversity and phylogeographic structure of Triosteum pinnatifidumbased chloroplast DNA sequence rbcL-accD, Bull. Bot. Res., 2018a, vol. 38, pp. 278–283. https://doi.org/10.7525/j.issn.1673-5102.2018.02.016

Liu, H.R., Gao, Q.B., Zhang, F.Q., Khan, G., and Chen, S.L., Westwards and northwards dispersal of Triosteum himalayanum (Caprifoliaceae) from the Hengduan Mountains region based on chloroplast DNA phylogeography, PeerJ, 2018b, vol. 6, p. e4748. https://doi.org/10.7717/peerj.4748

Liu, H.R., Xia, M.Z., Xiao, Q.M., Zhang, D.J., et al., Characterization of the complete chloroplast genome of Linnaea borealis, a rare, clonal self-incompatible plant, Mitochondrial DNA, Part B, 2020, vol. B5, pp. 200–201. https://doi.org/10.1080/23802359.2019.1698995

Liu, H.R., Khan, G., Gao, Q., Zhang, F., Liu, W., Wang, Y., Fang, J., Chen, S., and Afridi, S.G., Dispersal into the Qinghai-Tibet plateau: evidence from the genetic structure and demography of the alpine plant Triosteum pinnatifidum, PeerJ, 2022, vol. 10, p. e12754. https://doi.org/10.7717/peerj.12754

Lowe, T.M. and Chan, P.P., tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes, Nucleic Acids Res., 2016, vol. 44, pp. W54–W5. https://doi.org/10.1093/nar/gkw413

Lv, W.Q., Jiang, H.F., Bo, J., He, S.P., et al., Comparative mitochondrial genome analysis of Neodontobutis hainanensis and Perccottus glenii reveals conserved genome organization and phylogeny, Genomics, 2020, vol. 112, pp. 3862–3870. https://doi.org/10.1016/j.ygeno.2020.06.039

O’Conner, S. and Li, L., Mitochondrial fostering: The mitochondrial genome may play a role in plant orphan gene evolution, Front. Plant Sci., 2020, vol. 11, p. 600117. https://doi.org/10.3389/fpls.2020.600117

Perna, N.T. and Kocher, T.D., Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes, J. Mol. Evol., 1995, vol. 41, pp. 353–358. https://doi.org/10.1007/BF00186547

Plotkin, J.B. and Kudla, G., Synonymous but not the same: the causes and consequences of codon bias, Nat. Rev. Genet., 2011, vol. 12, pp. 32–42. https://doi.org/10.1038/nrg2899

Rhoads, A. and Au, K.F., PacBio sequencing and its applications, Genomics, Proteomics Bioinf., 2015, vol. 13, pp. 278–289. https://doi.org/10.1016/j.gpb.2015.08.002

Rödelsperger, C. and Sommer, R.J., Computational archaeology of the Pristionchus pacificus genome reveals evidence of horizontal gene transfers from insects, BMC Evol. Biol., 2011, vol. 11, p. 239. https://doi.org/10.1186/1471-2148-11-239

Rombel, I.T., Sykes, K.F., Rayner, S., and Johnston, S.A., ORF-FINDER: a vector for high-throughput gene identification, Gene, 2002, vol. 282, pp. 33–41. https://doi.org/10.1016/S0378-1119(01)00819-8

Rozewicki, J., Li, S., Amada, A.M., Katoh, K., et al., MAFFT-DASH: integrated protein sequence and structural alignment, Nucleic Acids Res., 2019, vol. 47, pp. W5–W10. https://doi.org/10.1093/nar/gkz342

Salmela, L. and Rivals, E., LoRDEC: accurate and efficient long read error correction, Bioinformatics, 2014, vol. 30, pp. 3606–3614. https://doi.org/10.1093/bioinformatics/btu538

Stamatakis, A., RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, 2014, vol. 30, pp. 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

Taanman, J.W., The mitochondrial genome: structure, transcription, translation and replication, Biochim. Biophys. Acta, 1999, vol. 1410, pp. 103–123. https://doi.org/10.1016/s0005-2728(98)00161-3

Tang, D.F., Wei, F., Kashif, M.H., Zhou, R.Y., et al., Identification and analysis of RNA editing sites in chloroplast transcripts of kenaf (Hibiscus cannabinus L.), 3 Biotech., 2019, vol. 9, p. 361. https://doi.org/10.1007/s13205-019-1893-3

Tang, Y., Zheng, X., Liu, H., and Sunxie, F., Population genetics and comparative mitogenomic analyses reveal cryptic diversity of Amphioctopus neglectus (Cephalopoda: Octopodidae), Genomics, 2020, vol. 112, pp. 3893–3902. https://doi.org/10.1016/j.ygeno.2020.06.036

Wang, D.P., Zhang, Y.B., Zhang, Z., Yu, J., et al., KaKs_Calculator 2.0: A toolkit incorporating gamma-series methods and sliding window strategies, Genomics, Proteomics Bioinf., 2010, vol. 8, pp. 77–80. https://doi.org/10.1016/S1672-0229(10)60008-3

Wang, S.B., Song, Q.W., Li, S.S., Hu, Z.G., et al., Assembly of a complete mitogenome of Chrysanthemum nankingense using oxford nanopore long reads and the diversity and evolution of Asteraceae mitogenomes, Genes, 2018, vol. 9, p. 547. https://doi.org/10.3390/genes9110547

Wong, E.H., Smith, D.K., Rabadan, R., Peiris, M., and Poon, L.L., Codon usage bias and the evolution of influenza a viruses. Codon Usage Biases of Influenza Virus, BMC Evol. Biol., 2010, vol. 10, p. 253. https://doi.org/10.1186/1471-2148-10-253

Xu, X.D., Jia, Y.Y., Cao, S.S., Zhang, J.Y., et al., Six complete mitochondrial genomes of mayflies from three genera of Ephemerellidae (Insecta: Ephemeroptera) with inversion and translocation of trnI rearrangement and their phylogenetic relationships, PeerJ, 2020, vol. 8, p. e9740. https://doi.org/10.7717/peerj.9740

Yang, Q.E., Landrein, S., Osborne, J., and Borosova, R., Caprifoliaceae, in Flora of China, Wu Z.Y. and Raven, P.H., Eds., Beijing: Sci. Press, 2011, vol. 19, pp. 616–617.

Ye, N., Wang, X.L., Li, J., Ye, Q.L., et al., Assembly and comparative analysis of complete mitochondrial genome sequence of an economic plant Salix suchowensis, PeerJ, 2017, vol. 5, p. e3148. https://doi.org/10.7717/peerj.3148

Ye, J.Y., Cheng, J., Ren, Y.H., Liao, W.L., and Li, Q., The first Mitochondrial genome for Geastrales (Sphaerobolus stellatus) reveals intron dynamics and large-scale gene rearrangements of Basidiomycota Geastrales, Front. Microbiol., 2020, vol. 11, p. 1970. https://doi.org/10.3389/fmicb.2020.01970

Yildiz, G. and Ozkilinc, H., First characterization of the complete mitochondrial genome of fungal plant-pathogen Monilinia laxa which represents the mobile intron rich structure, Sci. Rep., 2020, vol. 10, p. 13644. https://doi.org/10.1038/s41598-020-70611-z

Zhang, L., Zhang, L., Yin, M., Wang, J.T., and Zhang, G., Investigation on plant resources for Qinling Qiyao, Northwest Pharm. J., 2014, vol. 29, pp. 335–343. https://doi.org/10.3969/j.issn.1004-2407.2014.04.002

Zhao, Z.Q., Su, Y.F., Huang, X., Ma, X.J., et al., Chemical constituents from aerial parts of Triosteum pinnatifidum, Chin. Tradit. Herb. Drugs, 2016, vol. 47, pp. 2089–2094. https://doi.org/10.7501/j.issn.0253-2670.2016.12.0z12

Zhou, X.W., Systematic Evolution of Caprifoliaceous Plants in 12 Genera, J. Shenyang Univ., 2012, vol. 24, p. 39–41.