TSitologiya i Genetika 2023, vol. 57, no. 2, 33-53
Cytology and Genetics 2023, vol. 57, no. 2, 142–156, doi: https://www.doi.org/10.3103/S0095452723020093

Modern approaches to genetic engineering in the Orchidaceae family

Ovcharenko O., Rudas V.

  • Institute of Cell Biology and Genetic Engineering, 148, Zabolotnogo str., Kyiv, Ukraine 03143

SUMMARY. Orchids are one the most widespread groups of flowering plants with a wide geographical range and species diversity. A number of tropical and subtropical species are used as decorative, medicinal and edible. The increased demand for plant material, while a large number of species are under threat of extinction in nature, makes growing of orchids in culture relevant. Traditionally, new interesting forms have been obtained through hybridization and selection, which require considerable time. Not all requirements for elite varieties can be solved by traditional breeding methods. The application of the achievements of modern molecular biology significantly expands the possibilities of breeders. The development of genetic engineering methods allows introducing both new heterologous genes to orchids and editing their own genes, which can significantly speed up and increase the success of the traditional selection process. Members of the Orchidaceae family can be used not only for introduction of valuable heterologous genes, but also as saurce of unique genes for the improvement of cultivated species of other families. The review examines the current state and prospects of genetic engineering of orchids, their use as recipients and donors of genes for genetic transformation.

Keywords: genetic transformation, Orchidaceae, gene expression, CRISPR-Cas

TSitologiya i Genetika
2023, vol. 57, no. 2, 33-53

Current Issue
Cytology and Genetics
2023, vol. 57, no. 2, 142–156,
doi: 10.3103/S0095452723020093

Full text and supplemented materials

References

Anzai, H., Ishii, Y., Shichinohe, M., et al., Transformation of Phalaenopsis by particle bombardment, Plant Tissue Cult. Lett., 1996, vol. 13, pp. 265–272. https://doi.org/10.5511/plantbiotechnology1984.13.265

Arora, L. and Narula, A., Gene editing and crop improvement using CRISPR-Cas9 system, Front. Plant Sci., 2017, vol. 8, p. 1932. https://doi.org/10.3389/fpls.201701932

Atichart, P., Bunnag, S., and Theerakulpisut, P., Agrobacterium-mediated transformation of Dendrobium secundum (Bl.) Lindl with antisence ACC oxidase, Asian J. Plant Sci., 2007, vol. 6, no. 7, pp. 1065–1071. https://doi.org/10.3923/ajps.2007.1065.1071

Belarmino, M.M. and Mii, M., Agrobacterium-mediated genetic transformation of a phalaenopsis orchid, Plant Cell Rep., 2000, vol. 19, pp. 435–442. https://doi.org/10.1007/s002990050752

Chai, D. and Yu, H., Recent advances in transgenic orchid production, Orchid Sci. Biotechnol., 2007, vol. 1, no. 2, pp. 34–39

Chai, M.L., Xu, C.J., Senthil, K.K., et al., Stable transformation of protocorm-like bodies in Phalaenopsis orchid mediated by Agrobacterium tumefaciens, Sci. Hortic., 2002, vol. 96, pp. 213–224. https://doi.org/10.1016/S0304-4238(02)00084-5

Chai, D., Lee, S.M., Ng, J.H., and Yu, H., L-Methionine sulfoximine as a novel selection agent for genetic transformation of orchids, J. Biotechnol., 2007, vol. 131, pp. 466–472. https://doi.org/10.1016/j.jbiotec.2007.07.951

Chan, Y.L., Lin, K.H., Liao, L.J., et al., Gene stacking in Phalaenopsis orchid enhances dual tolerance to pathogen attack, Transgenic Res., 2005, vol. 14, pp. 279–288. https://doi.org/10.1007/s11248-005-0106-5

Chen, M., Choi, Y., Voytas, D.F., et al., Mutations in the Arabidopsis VAR2 locus cause leaf variegation due to the loss of a chloroplast FtsH protease, Plant J., 2000, vol. 22, pp. 303–313. https://doi.org/10.1046/j.1365-313x.2000.00738.x

Chen, T.H.H., Han, K.-H., and Huang, P.-L., Genetic transformation of orchids, in Plant Genetic Engineering (Improvement of Commercial Plants), Singh, R.P. and Jaiwal, P.K., Eds., United States: LLC, 2003, pp. 197–221.

Chen, L., Kawai, H., Oku, H., et al., Introduction of Odontoglossum ringsport virus coat protein gene into Cymbidium niveo-marginatum mediated by Agrobacterium tumefaciens to produce transgenic plants, J. Jpn. Soc. Hortic. Sci., 2006, vol. 75, no. 3, pp. 249–255. https://doi.org/10.2503/jjshs.75.249

Chen, J., Wang, L., Chen, J., et al., Agrobacterium tumefaciens-mediated transformation system for the important medicinal plant Dendrobium catenatum Lindl, In Vitro Cell. Dev. Biol., Plant, 2018, vol. 54, pp. 228–239. https://doi.org/10.1007/s11627-018-9903-4

Chen, T.Y., Pai, H., Hou, L.Y., et al., Dual resistance of transgenic plants against Cymbidium mosaic virus and Odontoglossum ringspot virus, Sci. Rep., 2019, vol. 9, no. 1, p. 10230. https://doi.org/10.1038/s41598-019-46695-7

Chia, T.F., Chan, Y.S., and Chua, N.H., The firefly luciferase gene as a non-invasive reporter for Dendrobium transformation, Plant J., 1994, vol. 6, pp. 441–446. https://doi.org/10.1046/j.1365-313X.1994.06030441.x

Chin, D.P., Mishiba, K., and Mii, M., Agrobacterium-mediated transformation of protocorm-like bodies in Cymbidium, Plant Cell Rep., 2007, vol. 26, pp. 735–743. https://doi.org/10.1007/s00299-006-0284-5

Cox, K.D., Layne, D.R., Scorza, R., et al., Gastrodia anti-fungal protein from the orchid Gastrodia elata confers disease resistance to root pathogens in transgenic tobacco, Planta, 2006, vol. 224, pp. 1373–1383. https://doi.org/10.1007/s00425-006-0322-0

Ding, L., Wang, Y., and Yu, H., Overexpression of DOSOC1, an ortholog of Arabidopsis SOC1, promotes flowering in the orchid Dendrobium Chao Parya Smile, Plant Cell Physiol., 2013, vol. 54, no. 4, pp. 595–608. https://doi.org/10.1093/pcp/pct026

Gnasekaran, P. and Subramaniam, S., Mapping of the interaction between Agrobacterium tumefaciens and Vanda Kasem’s Delight orchid protocorm-like bodies, Indian J. Microbiol., 2015, vol. 55, no. 3, pp. 285–291. https://doi.org/10.1007/s12088-015-0519-7

Gnasekaran, P., Antony, J.J.J., Uddain, J., et al., Agrobacterium-mediated transformation of the recalcitrant Vanda Kasem’s Delight orchid with higher efficiency, Sci. World J., 2014, vol. 2014, p. 583934. https://doi.org/10.1155/2014/583934

Griesbach, R.J., An improved method for transforming plants through electrophoresis, Plant Sci., 1994, vol. 102, pp. 81–89. https://doi.org/10.1016/0168-9452(94)03936-4

Gritz, L. and Davies, J., Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Esherihia coli and Saccharomyces cerevisiae, Gene, 1983, vol. 25, pp. 179–188. https://doi.org/10.1016/0378-1119(83)90223-8

Guo, M., Chen, H., Dong, S., et al., CRISPR-Cas gene editing technology and its application prospect in medicinal plants, Chin. Med., 2022, vol. 17, p. 33. https://doi.org/10.1186/s13020-022-00584-w

Hsiao, Y.Y., Fu, C.H., Ho, S.Y., et al., OrchidBase 4.0: a database for orchid genomics and molecular biology, BMC Plant Biol., 2021, vol. 21, p. 371. https://doi.org/10.1186/s12870-021-03140-0

Hsing, H.X., Lin, Y.J., Tong, Ch.G., et al., Efficient and heritable transformation of Phalaenopsis orchids, Bot. Stud., 2016, vol. 57, p. 30. https://doi.org/10.1186/s40529-016-0146-6

Julkifle, A.L., Rathinam, X., Sinniah, U.R., et al., Optimisation of transient green fluorescent protein (GFP) gene expression in Phalaenopsis violacea orchid mediated by Agrobacterium tumefaciens-mediated transformation system, Aust. J. Basic Appl. Sci., 2010, vol. 4, pp. 3424–3432.

Kasulo, V., Mwabumba, L., and Cry, M., A review of edible orchids in Malawi, J. Hort. For., 2009, vol. 1, no. 7, pp. 133–139. http://www.academicjournals.org/jhf.

Knapp, J.E., Kausch, A.P., and Chandlee, J.M., Transformation of three genera of orchid using the bar gene as a selectable marker, Plant Cell Rep., 2000, vol. 19, pp. 893–898. https://doi.org/10.1007/s002990000202

Koh, K.W., Lu, H.-Ch., and Chan, M.-T., Virus resistance in orchids, Plant Sci., 2014, vol. 228, pp. 26–38. https://doi.org/10.1016/j.plantsci.2014.04.015

Kuehnle, A.R. and Sugii, N., Transformation of Dendrobium orchid using particle gun bombardment of protocorms, Plant Cell Rep., 1992, vol. 11, pp. 484–488. https://doi.org/10.1007/BF00232696

Kui, L., Chen, H., Zhang, W., et al., Building a genetic manipulation tool box for orchid biology: identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, Dendrobium officinale, Front. Plant Sci., 2017, vol. 7, p. 2036. https://doi.org/10.3389/fpls.2016.02036

Kyrpa, T.M., Rudas, V.A., Ovcharenko, O.A., et al., Heterologous expression of Δ9-acyl-lipid desaturase of cyanobacteria in orchid Dendrobium linguella Rchb. F., Fakt. Exp. Evol. Org., 2013. vol. 12. pp. 244–249. http://utgis.org.ua/journals/index.php/Faktory/article/view/80

Lee, Sh., Li, Ch., Liau, Ch., et al., Establishment of an Agrobacterium-mediated genetic transformation procedure for the experimental model orchid Erycina pusilla, Plant Cell Tissue Organ Cult., 2015, vol. 120, pp. 211–220. https://doi.org/10.1007/s11240-014-0596-z

Li, C.W. and Chan, M.T., Recent protocols on genetic transformation of orchid species, in Orchid Propagation: From Laboratories to Greenhouses-Methods and Protocols, Lee, Y.I. and Yeung, E.T., Eds., New York: Humana Press, 2018. https://doi.org/10.1007/978-1-4939-7771-0_20

Liao, L.J., Pan, I.C., Chan, Y.L., et al., Transgene silencing in Phalaenopsis expressing the coat protein of Cymbidium Mosaic Virus is a manifestation of RNA-mediated resistance, Mol. Breed., 2004, vol. 13, pp. 229–242. https://doi.org/10.1023/B:MOLB.0000022527.68551.30

Liau, C.H., You, S.J., Prasad, V., et al., Agrobacterium tumefaciens-mediated transformation of an Oncidium orchid, Plant Cell Rep., 2003, vol. 21, pp. 993–998. https://doi.org/10.1007/s00299-003-0614-9

Liu, J.-X., Chiou, Ch.-Y., Shen, Ch.-H., et al., RNA interference-based gene silencing of phytoene synthase impairs growth, carotenoids, and plastid phenotype in Oncidium hybrid orchid, SpringerPlus, 2014, vol. 3, p. 478. https://doi.org/10.1186/2193-1801-3-478

Luo, B.-X., Zhang, L., Zheng, F., et al., Ovule development and in planta transformation of Paphiopedilum Maudiae by Agrobacterium-mediated ovary-injection, Int. J. Mol. Sci., 2021, vol. 22, p. 84. https://doi.org/10.3390/ijms22010084

Malabadi, R.B. and Nataraja, K., Genetic transformation of Vanilla planifolia by Agrobacterium-tumefaciens using shoot tip sections, Bot. Res. J., 2007, vol. 2, pp. 86–94. https://doi.org/10.3923/rjb.2007.86.94

Men, S., Ming, X., Liu, R., et al., Agrobacterium-mediated genetic transformation of a Dendrobium orchid, Plant Cell, Tissue Organ Cult., 2003a, vol. 75, pp. 63–71. https://doi.org/10.1023/A:1024627917470

Men, S., Ming, X., Wang, Y., et al., Genetic transformation of two species of orchid by biolistic bombardment, Plant Cell Rep., 2003b, vol. 21, pp. 592–598. https://doi.org/10.1007/s00299-002-0559-4

Mishiba, K., Chin, D.P., and Mii, M., Agrobacteriummediated transformation of Phalaenopsis by targeting protocorms at an early stage after germination, Plant Cell Rep., 2005, vol. 24, pp. 297–303. https://doi.org/10.1007/s00299-005-0938-8

Mudalige, R.G. and Kuehnle, A.R., Orchid biotechnology in production and improvement, Hortic. Sci., 2004, vol. 39, no. 1, pp. 11–17. https://doi.org/10.21273/HORTSCI.39.1.11

Mursyanti, E., Purwantoro, A., Moeljopawiro, S., et al., Induction of somatic embryogenesis through overexpression of ATRKD4 genes in Phalaenopsis “Sogo Vivien”, Indones. J. Biotechnol., 2015, vol. 20, no. 1, pp. 42–53. https://doi.org/10.22146/ijbiotech.15276

Nagel, A.K., Schnabel, G., Petri, C., et al., Generation and characterization of transgenic plum lines expressing the Gastrodia antifungal protein, HortScience, 2008, vol. 43, no. 5, pp. 1514–1521. https://doi.org/10.21273/HORTSCI.43.5.1514

Niyomtham, K., Bhinija, K., and Huehne, P.S., A direct gene transferring system for Oncidium orchids, a difficult crop for genetic transformation, Agric. Nat. Res., 2018, vol. 52, no. 5, pp. 424–429. https://doi.org/10.1016/j.anres.2018.11.006

Nopitasari, S., Setiawati, Y., and Lawrie, M.D., Development of an agrobacterium-delivered CRISPR/Cas9 for Phalaenopsis amabilis (L.) Blume genome editing system, AIP Conf. Proc., 2020, vol. 2260, p. 060014. https://doi.org/10.1063/5.0015868

Phlaetita, W., Chin, D.P., Otanga, N.V., et al., High efficiency Agrobacterium-mediated transformation of Dendrobium orchid using protocorms as a target material, Plant Biotechnol., 2015, vol. 32, pp. 323–327. https://doi.org/10.5511/plantbiotechnology.15.0804a

Phlaetita, W., Chin, D.P., Tokuhara, K., et al., Agrobacterium-mediated transformation of protocormlike bodies in Dendrobium Formidible “Ugusu”, Plant Biotechnol., 2015, vol. 32, pp. 225–231. https://doi.org/10.5511/plantbiotechnology.15.0619a

Qin, X., Liu, Y., Mao, S., et al., Genetic transformation of lipid transfer protein encoding gene in Phalaenopsis amabilis to enhance cold resistance, Euphytica, 2011, vol. 177, pp. 33–43. https://doi.org/10.1007/s10681-010-0246-4

Raffeiner, B., Serek, M., and Winkelmann, T., Agrobacterium tumefaciens-mediated transformation of Oncidium and Odontoglossum orchid species with the ethylene receptor mutant gene etr1-1, Plant Cell, Tissue Organ Cult., 2009, vol. 98, pp. 125–134. https://doi.org/10.1007/s11240-009-9545-7

Ratheesh, S.T. and Bhat, A.I., Genetic transformation and regeneration of transgenic plants from protocorm like bodies of vanilla using Agrobacterium tumefaciens, J. Plant Biochem. Biotechnol., 2011, vol. 20, no. 2, pp. 262–269. https://doi.org/10.1007/s13562-011-0057-2

Rudas, V.A., Markovskui, O.V., Schinkarchuk, M.V., et al., Production of transgenic orchid Dendrobium linguella RCHB. F. plants, carrying bar gene and cyp11a1 gene of cytochome P450scc, Fakt. Exp. Evol. Org., 2016, vol. 19, pp. 185–187. http://utgis.org.ua/journals/index.php/ Faktory/article/view/662.

Sastry, K.S., Mandal, B., Hammond, J., et al., Encyclopedia of Plant Viruses and Viroids, New Delhi: Springer Nature India Private Limited, 2019, p. 2936. https://doi.org/10.1007/978-81-322-3912-3

Sawettalake, N., Bunnag, S., Wang, Y., et al., DOAP1 Promotes flowering in the orchid Dendrobium Chao Praya Smile, Front. Plant Sci., 2017, vol. 23, vol. 8, p. 400. https://doi.org/10.3389/fpls.2017.00400

Semiarti, E., Orchid biotechnology for Indonesian orchids conservation and industry, AIP Conf. Proc. 2002, 2018, no. 1, p. 020022. https://doi.org/10.1063/1.5050118

Semiarti, E., Indrianto, A., Purwantoro, A., et al., Agrobacterium-mediated transformation of the wild orchid species Phalaenopsis amabilis, Plant, 2007, vol. 24, no. 3, pp. 265–272. https://doi.org/10.5511/plantbiotechnology.24.265

Semiarti, E., Indrianto, A., Purwantoro, A., et al., Agrobacterium-mediated transformation of Indonesian orchids for micropropagation, in Genetic Transformation, IntechOpen, 2011. https://doi.org/10.5772/24997

Semiarti, E., Mercuriani, I.S., Rizal, R., et al., Overexpression of PaFT gene in the wild orchid Phalaenopsis amabilis (L.) Blume, AIP Conf. Proc., 2015, vol. 1677, p. 090005. https://doi.org/10.1063/1.4930750

Semiarti, E., Purwantoro, A., and Puspita Sari, I., Biotechnology approaches on characterization, mass propagation, and breeding of indonesian orchids Dendrobium lineale (Rolfe.) and Vanda tricolor (Lindl.) with its phytochemistry, in Orchids Phytochemistry, Biology and Horticulture. Reference Series in Phytochemistry, Merillon, J.M. and Kodja, H., Eds., Cham: Springer-Verlag, 2020a. https://doi.org/10.1007/978-3-030-11257-8_12-1

Semiarti, E., Nopitasari, S., Setiawati, Y., et al., Application of CRISPR/Cas9 genome editing system for molecular breeding of orchid, Indones. J. Biotechnol., 2020b, vol. 25, no. 1, pp. 61–68.

Setiari, N., Purwantoro, A., Moeljopawiro, S., et al., Micropropagation of Dendrobium phalaenopsis Orchid Through Overexpression of Embryo Gene AtRKD4, J. Agric. Sci., 2018, vol. 40, no. 2, pp. 284–294. https://doi.org/10.17503/agrivita.v40i2.1690

Setiawati, Y., Nopitasari, S., Lawrie, M.D., et al., Agrobacterium-mediated transformation facillitates the CRISPR/Cas9 genome editing system in Dendrobium macrophyllum A. Rich orchid, AIP Conf. Proc., 2020, vol. 2260, p. 060016. https://doi.org/10.1063/5.0016200

Shrestha, B.R., Chin, D.P., Tokuhara, K., et al., Efficient production of transgenic plants of Vanda through sonication-assisted Agrobacterium-mediated transformation of protocorm-like bodies, Plant Biotechnol., 2007, vol. 24, pp. 429–434. https://doi.org/10.5511/plantbiotechnology.24.429

Sjahril, R. and Mii, M., High-efficiency Agrobacterium-mediated trasnformation of Phalaenopsis using meropenem, a novel antibiotic to eliminate Agrobacterium, J. Hortic. Sci. Biotechnol., 2006, vol. 81, pp. 458–464. https://doi.org/10.1080/14620316.2006.11512088

Sjahril, R., Chin, D., Khan, R., et al., Transgenic Phalaenopsis plants with resistance to Erwinia carotovora produced by introducing wasabi defensin gene using Agrobacterium method, Plant Biotechnol., 2006, vol. 23, pp. 191–194. https://doi.org/10.5511/plantbiotechnology.23.191

Stillwell, N., McCafferty, H., Zhu, Y.J., et al., Characterization of Brassolaeliocattleya Raye Holmes “Mendenhall” – putatively transformed for resistance to Cymbidium mosaic virus, Lankesteriana, 2013, vol. 13, nos. 1–2, pp. 153–154. https://doi.org/10.15517/lank.v0i0.11632

Su, V. and Hsu, B., Cloning and expression of a putative cytochrome P450 gene that influences the colour of Phalaenopsis flowers, Biotechnol. Lett., 2003, vol. 25, pp. 1933–1939. https://doi.org/10.1023/B:BILE.0000003989.19657.53

Suwanaketchanatit, C., Piluek, J., Peyachoknagul, S., et al., High efficiency of stable genetic transformation in Dendrobium via microprojectile bombardment, Biologia Plantarum, 2007, vol. 51, no. 4, pp. 720–727. https://doi.org/10.1007/s10535-007-0148-z

Teixeira da Silva, J.A., Orchids: Advances in Tissue Culture, Genetics, Phytochemistry and Transgenic Biotechnology, Floricult. Ornamental Biotechnol., 2013, vol. 7, no. 1, pp. 1–52.

Teixeira da Silva, J.A., Chin, D.P., Van, P.T., and Mii, M., Transgenic orchids, Scientia Horticulturae, 2011, vol. 130, no. 4, pp. 73–680.

Teixeira da Silva, J.A., Dobránszki, J., Cardoso, J.C., et al., Methods for genetic transformation in Dendrobium, Plant Cell Rep., 2016, vol. 35, pp. 483–504. https://doi.org/10.1007/s00299-015-1917-3

Thiruvengadam, M., Hsu, W.H., and Yang, C.H., Phosphomannose-isomerase as a selectable marker to recover transgenic orchid plants (Oncidium Gower Ramsey), Plant Cell, Tissue Organ Cult., 2011, vol. 104, pp. 239–246. https://doi.org/10.1007s11240-010-9827-0

Thompson, C.J., Movva, N.R., Tizard, R., et al., Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus, EMBO J., 1987, vol. 6, pp. 2519–2523 https://doi.org/10.1002/j.1460-2075.1987.tb02538.x

Tong, C.-G., Wu, F.-H., Yuan, Y.-H., et al., High-efficiency CRISPR/Cas-based editing of Phalaenopsis orchid MADS genes, Plant Biotechnol., 2020, vol. 18, pp. 889–891. https://doi.org/10.1111/pbi.13264

Umemura, F., Expression analysis of Phalaenopsis orchid introduced disease resistance gene Chitinase, MSc Thesis (Agro-Environ.), Obihiro Univ., 2007.

Utami, E.S.W., Hariyanto, S., and Manuhara, Y.S.W., Agrobacterium tumefaciens-mediated transformation of Dendrobium lasianthera J.J.Sm: An important medicinal orchid, J. Genet. Eng. Biotechnol., 2018, vol. 16, pp. 703–709. https://doi.org/10.1016/j.jgeb.2018.02.002

Wang, X., Bauw, G., Van Damme, E.J., et al., Gastrodianin-like mannose-binding proteins: a novel class of plant proteins with antifungal properties, Plant J., 2001, vol. 25, pp. 651–661. https://doi.org/10.1046/j.1365-313x.2001.00999.x

Yang, J., Lee, H.-J., Shin, D.H., et al., Genetic transformation of Cymbidium orchid by particle bombardmen, Plant Cell Rep., 1999, vol. 18, pp. 978–984. https://doi.org/10.1007/s002990050694

Yee, N., Abdullah, J.O., Mahmood, M., et al., Co-transfer of gfp, CHS and hptII genes into Oncidium Sharry Baby PLB using the biolistic gun, Afr. J. Biotechnol., 2008, vol. 7, no. 15, pp. 2605–2617. http://www.academicjournals.org/AJB.

You, S.-J., Liau, Ch.-H., Huang, H.-En., et al., Sweet pepper ferredoxin-like protein (pflp) gene as a novel selection marker for orchid transformation, Planta, 2003, vol. 217, pp. 60–65. https://doi.org/10.1007/s00425-002-0970-7

Yu, H., Yang, S.H., and Goh, C.J., Agrobacterium-mediated transformation of a Dendrobium orchid with the class 1 knox gene DOH1, Plant Cell Rep., 2001, vol. 20, pp. 301–305. https://doi.org/10.1007/s002990100334

Yu, Z., He, C., Teixeira da Silva, J.A., et al., Molecular cloning and functional analysis of DoUGE related to water-soluble polysaccharides from Dendrobium officinale with enhanced abiotic stress tolerance, Plant Cell, Tissue Organ Cult., 2017, vol. 131, pp. 579–599. https://doi.org/10.1007/s11240-017-1308-2

Zhang, L., Chin, D.P., and Mii, M., Agrobacteriummediated transformation of protocorm-like bodies in Cattleya, Plant Cell, Tissue Organ Cult., 2010, vol. 103, pp. 41–47. https://doi.org/10.1007/s11240-010-9751-3

Zhu, Y., Meng, C., Zhu, L., et al., Cloning and characterization of DoMYC2 from Dendrobium officinale, Plant Cell, Tissue Organ Cult., 2017, vol. 129, pp. 533–554. https://doi.org/10.1007/s11240-017-1198-3