TSitologiya i Genetika 2023, vol. 57, no. 2, 15-21
Cytology and Genetics 2023, vol. 57, no. 2, 128–133, doi: https://www.doi.org/10.3103/S009545272302010X

TGFB1, FOXO1 and COMP genes expression in blood of patients with osteoarthritis after SARS-CoV2 infection

Huet А., Tugarov Yu., Dvorshchenko К., Grebinyk D., Savchuk О., Korotkyi O., Ostapchenko L.

  • Educational and Scientific Center «Institute of Biology and Medicine», Taras Shevchenko National University of Kyiv, st. Vladimirskaya 64/13, Kyiv, Ukraine, 01601

SUMMARY. Nowadays the possible influence of the coronavirus infection onto cartilage degeneration and synovial mem-brane inflammation during joint chronic pathology – osteoarthritis – remains largely unelucidated. The aim of the presented work is to analyze the ТGFB1, FOXO1 and COMP gene expression and free radical generation intensity in blood of patients suffering from osteoarthri-tis after beating the SARS-CoV2 infection. The work was carried out using molecular genetics and bio-chemistry methods. The decrease of the ТGFB1 and FOXO1 expression level was shown to be more evident in the osteoarthritis patients having beaten COVID-19 if compared to the group with knee joint osteoarthritis, during simultaneous and more prominent diminishing of both superoxide dismutase and catalase activity (possibly indicating cell redox state disruption and TGF-β1-FoxO1 signaling attenuation) in patients with osteo-arthritis having beaten SARS-CoV2 disease. At the sa-me time the more prominent decrease of COMP gene expression level was demonstrated in patients with osteoarthritis having beaten COVID-19 comparing to the patient group with knee joint osteoarthritis in the event of more intense increase of the COMP concentration in patients with osteoarthritis after the SARS-CoV2 in-fection. This data indicates more significant activation of cell destructive processes after beating the infection as well as further pathology progression.

Keywords: SARS-CoV-2, ТGFB1, FOXO1, COMP gene expression, osteoarthritis, COMP, catalase, superoxide dismutase

TSitologiya i Genetika
2023, vol. 57, no. 2, 15-21

Current Issue
Cytology and Genetics
2023, vol. 57, no. 2, 128–133,
doi: 10.3103/S009545272302010X

Full text and supplemented materials

References

Abusarah, J., Bentz, M., Benabdoune, H., et al., An overview of the role of lipid peroxidation-derived 4-hydroxynonenal in osteoarthritis, Inflammation Res., 2017, vol. 66, no. 8, pp. 637–651. https://doi.org/10.1007/s00011-017-1044-4

Cheng, N.T., Meng, H., Ma, L.F., et al., Role of autophagy in the progression of osteoarthritis: The autophagy inhibitor, 3-methyladenine, aggravates the severity of experimental osteoarthritis, Int. J. Mol. Med., 2017, vol. 39, pp. 1224–1232. https://doi.org/10.3892/ijmm.2017.2934

Chomczynski, P. and Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction, Anal. Biochem., 1987, vol. 162, no. 1, pp. 156–159. https://doi.org/10.1006/abio.1987.9999

Durak, I., Yurtarslanl, Z., Canbolat, O., et al., A methodological approach to superoxide dismutase (SOD) activity assay based on inhibition of nitroblue tetrazolium (NBT) reduction, Clin. Chim. Acta, 1993, vol. 214, no. 1, pp. 103–104. https://doi.org/10.1016/0009-8981(93)90307-p

Gasmi, A., Tippairote, T., Mujawdiya, P.K., et al., Neurological Involvements of SARS-CoV2, Infect. Mol. Neurobiol., 2021, vol. 58, no. 3, pp. 944–949. https://doi.org/10.1007/s12035-020-02070-6

Gasparotto, M., Framba, V., Piovella, C., Doria, A., and Iaccarino, L., Post-COVID-19 arthritis: a case report and literature review, Clin. Rheumatol., 2021, vol. 40, no. 8, pp. 3357–3362. https://doi.org/10.1007/s10067-020-05550-1

Góth, L., A simple method for determination of serum catalase activity and revision of reference range, Clin. Chim. Acta, 1991, vol. 196, nos. 2–3, pp. 143–151. https://doi.org/10.1016/0009-8981(91)90067-m

Huet, A., Dvorshchenko, K., Korotkyi, O., et al., Expression of Nos2 and acan genes in rat knee articular cartilage in osteoarthritis, Cytol. Genet., 2019, vol. 53, no. 6, pp. 481–488. https://doi.org/10.3103/S0095452719060021

Jaabar, I.L., Cornette, P., Miche, A., et al., Deciphering pathological remodelling of the human cartilage extracellular matrix in osteoarthritis at the supramolecular level, Nanoscale, 2022, no. 24. https://doi.org/10.1039/D2NR00474G

Joob, B. and Wiwanitkit, V., Arthralgia as an initial presentation of COVID-19: observation, Rheumatol. Int., 2020, vol. 40, p. 823. https://doi.org/10.1007/s00296-020-04561-0

Klotz, L.O., Sánchez-Ramos, C., Prieto-Arroyo, I., et al., Redox regulation of FoxO transcription factors, Redox Biol., 2015, vol. 6, pp. 51–72. https://doi.org/10.1016/j.redox.2015.06.019

Lai, Q., Spoletini, G., Bianco, G., et al., SARS-CoV2 and immunosuppression: A double-edged sword, Transpl. Infect. Dis., 2020, vol. 22, no. 6, p. e13404. https://doi.org/10.1111/tid.13404

Lauwers, M., Au, M., Yuan, S., et al., COVID-19 in joint ageing and osteoarthritis: current status and perspectives, Int. J. Mol. Sci., 2022, vol. 23, no. 3, p. 720. https://doi.org/10.3390/ijms23020720

Lee, K.I., Choi, S., Matsuzaki, T., et al., FOXO1 and FOXO3 transcription factors have unique functions in meniscus development and homeostasis during aging and osteoarthritis, Proc. Natl. Acad. Sci. U. S. A., 2020, vol. 117, no. 6, pp. 3135–3143. https://doi.org/10.1073/pnas.1918673117

Livak, K. and Schmittgen, T., Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method, Methods, 2001, vol. 25, no. 4, pp. 402–408. https://doi.org/10.1006/meth.2001.1262

Lowry, O.H., Rosebrough, N.J., Farr, A.L., et al., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, no. 1, pp. 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6

Matsuzaki, Ò., Alvarez-Garcia, O., Mokuda, S., et al., FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis, Sci. Transl. Med., 2018, vol. 10, p. eaan0746. https://doi.org/10.1126/scitranslmed.aan0746

McConnell, S., Kolopack, P., and Davis, A.M., The Western Ontario and McMaster universities osteoarthritis index (WOMAC): a review of its utility and measurement properties, Arthritis Care Res., 2001, vol. 45, no. 5, pp. 453–461. https://doi.org/10.1002/1529-0131(200110)45:5<453::aid-art365>3.0.co;2-w

Mishra, A., Awasthi, S., Raj, S., et al., Identifying the role of ASPN and COMP genes in knee osteoarthritis development, J. Orthop. Surg. Res., 2019, vol. 14, no. 1, p. 337. https://doi.org/10.1186/s13018-019-1391-7

Peng, Q., Qin, J., Zhang, Y., et al., Autophagy maintains the stemness of ovarian cancer stem cells by FOXA2, J. Exp. Clin. Cancer Res., 2017, vol. 36, p. 171. https://doi.org/10.1186/s13046-017-0644-8

Verdonk, R., Madry, H., Shabshin, N., et al., The role of meniscal tissue in joint protection in early osteoarthritis, Knee Surg., Sports Traumatol. Arthroscopy, 2016, vol. 24, pp. 1763–1774. https://doi.org/10.1007/s00167-016-4069-2

Wang, C., Shen, J., Ying, J., et al., FoxO1 is a crucial mediator of TGF-β/TAK1 signaling and protects against osteoarthritis by maintaining articular cartilage homeostasis, PNAS, 2016, vol. 117, no. 48, pp. 30488–30497. https://doi.org/10.1073/pnas.2017056117

Wu, Q., Zhong, Z.M., Zhu, S.Y., et al., Advanced oxidation protein products induce chondrocyte apoptosis via receptor for advanced glycation end products-mediated, redox-dependent intrinsic apoptosis pathway, Apoptosis, 2016, vol. 21, no. 1, pp. 36–50. https://doi.org/10.1007/s10495-015-1191-4

Yamamoto, K., Wilkinson, D., and Bou-Gharios, G., Targeting dysregulation of metalloproteinase activity in osteoarthritis, Calcif. Tissue Int., 2021, vol. 109, no. 3, pp. 277–290. https://doi.org/10.1007/s00223-020-00739-7