TSitologiya i Genetika 2023, vol. 57, no. 1, 103-105
Cytology and Genetics 2023, vol. 57, no. 1, 104–116, doi: https://www.doi.org/https://doi.org/10.3103/S0095452723010024

Signaling regulation of the humans MSC osteogenic differentiation. Metanalysis and bioinformatic analysis of micrornas impact

Avramets D.S., Macewicz L.L., Piven O.O.

  • Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akad. Zabolotnogo str, Kyiv, 03680, Ukraine

Numerous experimental data shows crucial involvement of miRs in skeletal development in embryos, osteogenic differentiation, and maturation. However, molecular me­chanisms of miRs action, in other words their target signaling pathways and transcriptional factors that specific drives osteogenic differentiation is far from being understood.  With meta­analysis we identified miRs significantly involved in hMSCs osteogenic differentiation. Statistical analysis revealed significant trend of upregulation of let­7a, mir­21, mir­26a, mir­29b, mir­101, mir­143, mir­218 during hMSCs differentiation into osteoblast. And the opposite trend was shown for mir­17, mir­31, mir­138 and mir­222: their content was significantly lower during osteogenic differentiation. Using bioinformatics approaches we identified predictable genes­target for each miRs, analyzed signaling networks and biological process enriched by these genes. Bioinformatic assay shows that miRNAs specifically involved in hMSCs transition into osteogenic differentiation via microenvironment formation (i.e. let­7a, mir­17, mir­21, mir­29b and mir­101), TGF­β/BMP–SMAD dependent pathway (i.e. let­7a, mir­17, mir­21, mir­26a mir­101) and MAPK signaling pathway (i.e. let­7a, mir­21, mir­26a, mir­29b, mir­143 and mir17). Yap­dependent expression of osteogenic transcriptional factors modulated by let­7a, mir­31mir­101, mir­138 and mir­222. We predicted that mir­17, mir­26a, mir­29b, mir­101, mir­138 and mir­222 are specifically involved in canonical Wnt signaling dependent osteogenesis as well as in osteoblast maturation together with let­7a, mir­29b and mir­218 which modulate AMPK signaling. Additionally, identified mir­101 is likely involved into osteoblast homeostasis via Hedgehog signaling. Presented here data expands knowledge in the field of hMSCs fate and osteogenesis orchestration by miRs, points to pro­osteogenic and anti­osteogenic miRs and their potential molecular pathways.

Keywords: cells signaling, differentiation, miR, microRNA, osteogenesis, osteogenic lineage, hMSCs

TSitologiya i Genetika
2023, vol. 57, no. 1, 103-105

Current Issue
Cytology and Genetics
2023, vol. 57, no. 1, 104–116,
doi: https://doi.org/10.3103/S0095452723010024

Full text and supplemented materials

References

Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, 2004, vol. 116, no. 2, pp. 281–297

Betel, D., Wilson, M., Gabow, A., Marks, D.S., and Sander, C., The microRNA.org resource: targets and expression, Nucleic Acids Res., 2008, vol. 36, pp. D149–D153. https://doi.org/10.1093/nar/gkm995

Brandaõ, A.S., Bensimon-Brito, A., Lourenço, R., Borbinha1, J., Soares, A.R., Mateus, R., Jacinto, A., Yap induces osteoblast differentiation by modulating Bmp signalling during zebrafish caudal fin regeneration, J. Cell Sci., 2019, vol. 132, p. jcs231993. https://doi.org/10.1242/jcs.231993

Bruderer, M., Richards, R.G., Alini, M., and Stoddart, M.J., Role and regulation of RUNX2 in osteogenesis, Eur. Cells Mater., 2014, vol. 28, pp. 269–286. https://doi.org/10.22203/eCM.v028a19

Discher, D., Mooney, D., and Zandstra, P., Growth factors, matrices, and forces combine and control stem cells, Science, 2009, vol. 324, no. 5935, pp. 1673–1677. https://doi.org/10.1126/science.1171643

Felber, K., Elks, P.M., Lecca, M., Roehl, H.H., Expression of osterix is regulated by FGF and Wnt/β-catenin signalling during osteoblast differentiation, PLoS One, 2015, vol. 10, no. 12, p. e0144982. https://doi.org/10.1371/journal.pone.0144982

Fröhlich, L.F., Micrornas at the interface between osteogenesis and angiogenesis as targets for bone regeneration, Cells, 2019, vol. 8, no. 2. https://doi.org/10.3390/cells8020121

Gebauer, F. and Hentze, M.W., Molecular mechanisms of translational control, Nat. Rev. Mol. Cell Biol., 2004, vol. 5, no. 10, pp. 827–835

Grimson, A., Farh, K.K., Johnston, W.K., Garrett-Engele, P., Lim, L.P., and Bartel, D.P., MicroRNA targeting specificity in mammals: Determinants beyond seed pairing, Mol. Cell, 2007, vol. 27, pp. 91–105. https://doi.org/10.1016/j.molcel.2007.06.017

Guo, P.-Y., Wu, L.-F., Xiao, Z.-Y., Huang, T.-L., and Li, X., Knockdown of MiR-140-5 promotes osteogenesis of adipose-derived mesenchymal stem cells by targeting TLR4 and BMP2 and promoting fracture healing in the atrophic nonunion rat model, Eur. Rev. Med. Pharmacol. Sci., 2019, vol. 23, no. 5, pp. 2112–2124. https://doi.org/10.26355/eurrev_201903_17255

Heberle, H., Meirelles, G.V., da Silva, F.R., Telles, G.P., and Minghim, R., Interacti Venn: a web-based tool for the analysis of sets through Venn diagrams, BMC Bioinf., 2015, vol. 16, p. 169. https://doi.org/10.1186/s12859-015-0611-3

Houschyar, K.S., Tapking, C., Borrelli, M.R., Popp, D., Duscher, D., Maan, Z.N., et al., Wnt Pathway in Bone Repair and Regeneration – What Do We Know So Far, Front. Cell Dev. Biol., 2019, vol. 6, p. 170. https://doi.org/10.3389/fcell.2018.00170

Huang, W., Yang, S., Shao, J., and Li, Y.-P., Signaling and transcriptional regulation in osteoblast commitment and differentiation, Front. Biosci., 2007, vol. 12, pp. 3068–3092.

Jeggari, A., Alekseenko, Z., Dias, J., Ericson, J., and Alexeyenko, A., EviNet: a web platform for network enrichment analysis with flexible definition of gene sets, Nucleic Acids Res., 2018, vol. 46, no. 1, pp. W163–W170. https://doi.org/10.1002/1878-0261.12350

Jeyabalan, J., Shah, M., Viollet, B., and Chenu, C., AMP-activated protein kinase pathway and bone metabolism, J. Endocrinol., 2012, vol. 212, no. 3, pp. 277–290.

Jiang, X., Zhang, Z., Peng, T., Wang, G., Xu, Q., and Li, G., miR204 inhibits the osteogenic differentiation of mesenchymal stem cells by targeting bone morphogenetic protein 2, Mol. Med. Rep., 2020, vol. 21, pp. 43–50.

Jing, D., Hao, J., Shen, Y., et al., The role of microRNAs in bone remodeling, Int. J. Oral. Sci., 2015, vol. 7, pp. 131–143. https://doi.org/10.1038/ijos.2015.22

Karner, C.M. and Long, F., Wnt signaling and cellular metabolism in osteoblasts, Cell. Mol. Life Sci.: CMLS, 2017, vol. 74, no. 9, pp. 1649–1657. https://doi.org/10.1007/s00018-016-2425-5

Landrier, J.-F., Derghal, A., and Mounien, L., Micro-RNAs in obesity and related metabolic disorders, Cells, 2019, vol. 8, no. 8, p. 859

Long, H., Zhu, Y., Lin, Z., et al., mir-381 modulates human bone mesenchymal stromal cells (BMSCs) osteogenesis via suppressing Wnt signaling pathway during atrophic nonunion development, Cell Death Dis., 2019, vol. 10, p. 470. https://doi.org/10.1038/s41419-019-1693-z

Lv, W.T., Du, D.H., Gao, R.J., Yu, C.W., Jia, Y., Jia, Z.F., and Wang, C.J., Regulation of hedgehog signaling offers a novel perspective for bone homeostasis disorder treatment, Int. J. Mol. Sci., 2019, vol. 20, no. 16, p. 3981. https://doi.org/10.3390/ijms20163981

Mizuno, Y., Yagi, K., Tokuzawa, Y., Kanesaki-Yatsuka, Y., Suda, T., Katagiri, T., et al., mir-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation, Biochem. Biophys. Res. Commun., 2008, vol. 368, no. 2, pp. 267–272. https://doi.org/10.1016/j.bbrc.2008.01.073

Mohri, T., Nakajima, M., Takagi, S., Komagata, S., and Yokoi, T., MicroRNA regulates human vitamin D receptor, Int. J. Cancer, 2009, vol. 125, no. 6, pp. 1328–1333. https://doi.org/10.1002/ijc.24459

Pan, J.X., Xiong, L., Zhao, K., et al., YAP promotes osteogenesis and suppresses adipogenic differentiation by regulating β-catenin signaling, Bone Res., 2018, vol. 6, p. 18.

Peng, S., Gao, D., Gao, C., Wei, P., Niu, M., and Shuai, C., MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review), Mol. Med. Rep., 2016, vol. 14, pp. 623–629.

Peng, H., Lu, S.-L., Bai, Y., Fang, X., Huang, H., and Zhuang, H.-Q., MiR-133a inhibits fracture healing via targeting RUNX2/BMP2, Eur. Rev. Med. Pharmacol. Sci., 2018, vol. 22, no. 9, pp. 2519−2526. https://doi.org/10.26355/eurrev_201805_14914

Rodríguez-Carballo, E., Gámez, B., and Ventura, F., p38 MAPK signaling in osteoblast differentiation, Front. Cell Dev. Biol., 2016, vol. 4, p. 40. https://doi.org/10.3389/fcell.2016.00040

Sanpaolo, E.R., Rotondo, C., Cici, D., et al., JAK/STAT pathway and molecular mechanism in bone remodeling, Mol. Biol. Rep., 2020, vol. 47, pp. 9087–9096. https://doi.org/10.1007/s11033-020-05910-9

Schindeler, A. and Little, D.G., Ras-MAPK signaling in osteogenic differentiation: friend or foe?, JBMR Vol., 2006, vol. 21, no. 9, pp. 1331–1338.

Sera, S. and Nieden, N., MicroRNA. Regulation of Skeletal Development, Curr Osteoporosis Rep., 2017, vol. 15, no. 4, pp. 353–366. https://doi.org/10.1007/s11914-017-0379-7

Trompeter, H.-I., Dreesen, J., Herman, E., et al., Micro-RNAs miR-26a, miR-26b, and miR-29b accelerate osteogenic differentiation of unrestricted somatic stem cells from human cord blood, BMC Genomics, 2013, vol. 14, p. 111.

Van Wijnen, A.J., van de Peppel, J., van Leeuwen, J.P., Lian, J.B., Stein, G.S., Westendorf, J.J., et al., MicroR-NA functions in osteogenesis and dysfunctions in osteoporosis, Curr. Osteoporosis Rep., 2013, vol. 11, no. 2, pp. 72–82. https://doi.org/10.1007/s11914-013-0143-6

Wang, J., Liu, S., Li, J., et al., Roles for miRNAs in osteogenic differentiation of bone marrow mesenchymal stem cells, Stem Cell Res. Ther., 2019, vol. 10, p. 197. https://doi.org/10.1186/s13287-019-1309-7

Wang, C., Qiao, X., Zhang, Z., and Li, C., MiR-128 promotes osteogenic differentiation of bone marrow mesenchymal stem cells in rat by targeting DKK2, Biosci. Rep., 2020, vol. 40, no. 2, p. BSR20182121. https://doi.org/10.1042/BSR20182121

Wu, M., Chen, G., and Li, Y.P., TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease, Bone Res., 2016, vol. 4, p. 16009. https://doi.org/10.1038/boneres.2016.9

Wu, X., Gu, Q., Chen, X., Mi, W., Wu, T., and Huang, H., MiR-27a targets DKK2 and SFRP1 to promote reosseointegration in the regenerative treatment of peri-implantitis, J. Bone Miner. Res., 2018, vol. 34, pp. 123–157.

Xu, G., Ding, Z., and Shi, H.-F., The mechanism of miR-889 regulates osteogenesis in human bone marrow mesenchymal stem cells, J. Orthop. Surg. Res., 2019, vol. 14, p. 366. https://doi.org/10.1186/s13018-019-1399-z

Yang, X.M., Song, Y.Q., Li, L., et al., mir-1249-5p regulates the osteogenic differentiation of ADSCs by targeting PDX1, J. Orthop. Surg. Res., 2012, vol. 16, p. 10. https://doi.org/10.1186/s13018-020-02147-x

Yeh, Y.T., Wei, J., Thorossian, S., Nguyen, K., Hoffman, C., del Álamo, C.J., et al., MiR-145 mediates cell morphology-regulated mesenchymal stem cell differentiation to smooth muscle cells, Biomaterials, 2019, vol. 204, pp. 59–69. https://doi.org/10.1016/j.biomaterials.2019.03.003

Zhang, C., Transcriptional regulation of bone formation by the osteoblast-specific transcription factor Osx, J. Orthop. Surg. Res., 2010, vol. 5, p. 37. https://doi.org/10.1186/1749-799X-5-37

Zhang, Y., Gordon, A., Qian, W., and Chen, W., Engineering Nanoscale Stem Cell Niche: Direct Stem Cell Behavior at Cell-Matrix Interface, Adv. Healthcare Mater., 2015, vol. 4, no. 13, p. 1900–1914. https://doi.org/10.1002/adhm.201500351