ISSN 0564-3783  
Main page
Preview papers  
Information to authors
Editorial board
Standard version

In Ukrainian

Export citations   UNIMARC   BibTeX   RIS

Obtaining of wheat (Triticum aestivum L.) lines with yeast genes of trehalose biosynthesis

Kvasko A.Yu., Isayenkov S.V., Dmytruk K.V., Sibirny A.A., Blume Ya.B., Yemets A.I.


SUMMARY. Yeast (Saccharomyces cerevisiae) trehalose biosynthesis genes (TPS1 and TPS2) were transferred into genomes of several common wheat varieties using two methods of Agrobacterium-mediated transformation (in vitro and in planta) to enhance their drought tolerance. For this purpose, vectors pBract214-TPS1 and pBract214-TPS2 were constructed using Gateway-cloning technique. Both vectors contained TPS1 and TPS2 genes under the control of the constitutive maize ubiquitin promoter (PUbi) and hygromycin-phosphotransferase (hpt) selec-table marker gene. Three-five days callus obtained from wheat immature embryos was used as explants for the transformation in vitro. Selection of transgenic plants was carried out on nutrient medium supplemented with 30 mg/L hygromycin (as selective agent). Seeds of wheat (transgenic generation T1) were obtained after in planta method of transformation. Integration and presence of yeast genes in wheat genomic DNA isolated from transgenic plants were confirmed by PCR analysis using primers specific to TPS1 and TPS2 genes.

Key words: trehalose, yeast genes of trehalose TPS1, TPS2, genetic transformation, Agrobacterium tumefaciens, in vitro, in planta, Triticum aestivum

Tsitologiya i Genetika 2020, vol. 54, no. 4, pp. 3-14

  1. Institute of Food Biotechnology and Genomics NAS of Ukraine, Ukraine 04123, Kyiv 123, Osipovskogo st. 2a
  2. nstitute of Cell Biology NAS of Ukraine, Ukraine, 79005, Lviv, Dragomanova st., 14/16

E-mail: kvasko.anna, yemets.alla

Kvasko A.Yu., Isayenkov S.V., Dmytruk K.V., Sibirny A.A., Blume Ya.B., Yemets A.I. Obtaining of wheat (Triticum aestivum L.) lines with yeast genes of trehalose biosynthesis, Tsitol Genet., 2020, vol. 54, no. 4, pp. 3-14.

In "Cytology and Genetics":
A. Yu. Kvasko, S. V. Isayenkov, K. V. Dmytruk, A. A. Sibirny, Ya. B. Blume & A. I. Yemets Obtaining Wheat (Triticum aestivum L.) Lines with Yeast Genes for Trehalose Biosynthesis, Cytol Genet., 2020, vol. 54, no. 4, pp. 283292
DOI: 10.3103/S0095452720040088


1. Yatsyshyn, V.Y., Kvasko, A.Y., and Yemets, A.I., Genetic approaches in research on the role of trehalose in plants, Cytol. Genet., 2017, vol. 51, pp. 371383.

2. Crowe, J.H., Hoekstra, F.A., and Crowe, L.M., Anhydrobiosis, Annu. Rev. Physiol., 1992, vol. 54, pp. 579599.

3. Bianchi, G., Gamba, A., Limiroli, R., Pozzi, N., Elster, R., Salamini, F., and Bartels, D., The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia,Physiol. Plant., 1993, vol. 87, pp. 223226.

4. Drennan, P.M., Smith, M.T., Goldsworthy, D., and Van Staden, J., The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw., J. Plant Physiol., 1993, vol. 142, pp. 493496.

5. Colaco, K., Kampinga, J., and Roser, B., Amorphous stability and trehalose, Science, 1995, vol. 268, pp. 788789.

6. Kim, J., Alizadeh, P., Harding, T., Hefner-Gravink, A., and Klionsky, D.J., Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing, and ethanol shock: potential commercial applications, Appl. Environ. Microbiol., 1996, vol. 62, pp. 15631569.

7. An, M.-Z., Tang, Y.-Q., Mitsumasu, K., Liu, Z.-S., Shigeru, M., and Kenji, K., Enhanced thermo-tolerance for ethanol fermentation of Saccharomyces cerevisiae strain by overexpression of the gene coding for trehalose-6-phosphate synthase, Biotechnol. Lett., 2011, vol. 33, pp. 13671374.

8. Romero, C., Belles, J.M., Vaya, J.L., Serrano, R., and Culianezmacia, F.A., Expression of the yeast trehalose 6 phosphate synthase gene in transgenic tobacco plants: Pleiotropic phenotypes include drought tolerance, Planta, 1997, vol. 201, pp. 293297.

9. Karim, S., Aronsson, H., Ericson, H., Pirhonen, M., Leyman, B., Welin, B., Mäntylä, E., Palva, E.T., Van Dijck, P., and Holmström, K.O., Improved drought tolerance without undesired side effects in transgenic plants producing trehalose, Plant Mol. Biol., 2007, vol. 64, pp. 371386.

10. Jang, I.C., Oh, S.J., Seo, J.S., Choi, W.B., Song, S.I., Kim, C.H., Kim, Y.S., Seo, H.S., Choi, Y.D., Nahm, B.H., and Kim, J.K., Expression of a bifunctional fusion of the Escherichia coli genes for trehalose6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth, Plant Physiol., 2003, vol. 131, no. 2, pp. 516524.

11. Wu, R. and Garg, A., Engineering Rice Plants with Trehalose-Producing Genes Improves Tolerance to Drought, Salt, and Low Temperature, ISB News Report, 2003. 2003/march/5456.htm.

12. Miranda, J.A., Avonce, N., Suárez, R, Thevelein, J.M., Dijck, P.V., and Iturriaga, G., A bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis,Planta, 2007, vol. 226, no. 6, pp. 14111421.

13. Hensel, G., Kastner, C, Oleszczuk, S., Riechen, J., and Kumlehn, J., Agrobacterium-mediated gene transfer to cereal crop plants: current protocols for barley, wheat, triticale, and maize, Int. J. Plant Genomics, 2009, vol. 1, pp. 19.

14. Manfroi, E., Yamazaki-Lau, E., Grando, M.F., and Roesler, E.A., Acetosyringone, pH and temperature effects on transient genetic transformation of immature embryos of Brazilian wheat genotypes by Agrobacterium tumefaciens,Genet. Mol. Biol., 2015, vol. 38, no. 4, pp. 470476.

15. Karimi, M., Inze, D., and Depicher, A., GATE-AWAY vectors for Agrobacterium-mediated plant transformation, Trends Plant. Sci., 2002, vol. 7, pp. 193195.

16. Fleuler, F., Stettler, T., Meyerhofer, M., Leder, L., and Mayr, I.M., Development of a novel Gateaway-based vector system for officient, multiparallel protein expression in Escherichia coli,Protein Expr. Purif., 2008, vol. 59, pp. 232241.

17. Kvasko A.Yu., Isayenkov S.V., Krasnoperova E.E., Dmytruk K.V., and Yemets A.I., Obtaining of wheat plants with yeast genes of trehalose biosynthesis TPS1 and TPS2,Rep. Natl. Acad. Sci. Ukraine, 2020, no. 6, pp. 92100.

18. Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, pp. 473497.

19. Gamborg, O.L. and Eveleigh, D., Culture methods and detection of glucanases in cultures of wheat and barley, Can. J. Biochem., 1968, vol. 46, no. 5, pp. 417 421.

20. Hensel, G., Marthe, C., and Kumlehn, J., Agrobacterium-mediated transformation of wheat using immature embryos, Methods Mol. Biol., 2017, vol. 1679, pp. 129139.

21. Ishida, Y., Tsunashima, M., Heiei, Y., and Komari, T., Wheat (Triticum aestivum L.) transformation using immature embryos, Methods Mol. Biol., 2015, vol. 1223, pp. 189198.

22. Zale, J.M., Agarwal, S., Loar, S., and Steber, C.M., Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens,Plant Cell Rep., 2009, vol. 28, no. 6, pp. 903913.

23. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., and Smith, S.A., in Current Protocols in Molecular Biology, New York: Willey, 1987, pp. 431433.

24. Amoah, B.K., Wu, H., Sparks, C., and Jones, H.D., Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue, J. Exp. Bot., 2001, vol. 52, no. 358, p. 11351142.

25. Fortin, C., Nester, E.W., and Dion, P., Growth inhibition and loss of virulence in cultures of Agrobacterium tumefaciens treated with acetosyringone, J. Bacteriol., 1992, vol. 174, no. 17, pp. 5676 5685.

26. Cheng, M., Fry, J.E., Pang, S., Zhou, H., Hironaka, C.M., Duncan, D.R., Conner, T.W., and Wan, Y., Genetic transformation of wheat mediated by Agrobacterium tumefaciens,Plant Physiol., 1997, vol. 115, pp. 971980.

27. Wu, H., Sparks, C., Amoah, B., and Jones, H.D., Factors influencing successful Agrobacterium-mediated genetic transformation of wheat, Plant Cell Rep., 2003, vol. 21, pp. 659668.

28. Ding, L., Li, S., Gao, J., Wang, Y., Yang G., and He, G., Optimization of Agrobacterium-mediated transformation conditions in mature embryos of elite wheat, Mol. Biol. Rep., 2009, vol. 36, pp. 2936.

29. Jones, H.D., Doherty, A., and Wu, H., Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat, Plant Methods, 2005, vol. 1, pp. 19.

30. Han, J., Yu, X., Chang, J., Yang, G., and He, G., Overview of the wheat genetic transformation and breeding status in China, Methods Mol. Biol., 2017, vol. 1679, no. 3, pp. 3760.

31. Shrawat, A.K. and Lorz, H., Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers, Plant Biotechnol. J., 2006, vol. 4, pp. 575603.

32. Li, H.W., Zang, B.S., Deng, X.W., and Wang, X.P., Overexpression of the trehalose-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice, Planta, 2011, vol. 234, pp. 10071018.

33. Kvasko, A.Yu., Isayenkov, S.V., Krasnoperova, E.E., Dmytruk, K.V., and Yemets, A.I., Genetic transformation of Nicotiana tabacum with yeast genes of trehalose biosynthesis TPS1 and TPS2,Visnyk Ukr. Tovarystva Genet. Selektsioneriv, 2019, vol. 18, no. 2, pp. 816.

34. Yei, E.T., Kwom, H.B., Han, S.E., Lee, J.T., Ryu, J.C., and Byun, M.O., Genetic engineering of drought resistant potato plants by introduction of the trehalose-6-phoshate synthase (TPS1) gene from Saccharomyces cerevisiae, Mol. Cells, 2000, vol. 10, pp. 263268.

35. Lawlor, D.W. and Paul, M.J., Source/sink interaction underpin crop yield: the case for trehalose-6-posphate/SnRK1 in improvement of wheat, Front. Plant Sci., 2014, vol. 418, pp. 116.

36. IIhan, S., Ozdemir, F., and Bor, M., Contribution of trehalose biosynthetic pathway to drought stress tolerance of Capparis ovata Desf., Plant Biol., 2015, vol. 17, pp. 402407.

37. Liu, X., Fu, L., Qin, P., Sun, Y., Liu, J., and Wang X., Overexpression of the wheat trehalose-6-phosphate synthase 11 gene enhances cold tolerance in Arabidopsis thaliana,Gene, 2019, vol. 710, pp. 210217.

Copyright© ICBGE 2002-2021 Coded & Designed by Volodymyr Duplij Modified 27.10.21