TSitologiya i Genetika 2020, vol. 54, no. 5, 27-38
Cytology and Genetics 2020, vol. 54, no. 5, 398–407, doi: https://www.doi.org/10.3103/S0095452720050059

Adaptive evolution for the improvement of ethanol production during alcoholic fermentation with the industrial strains of yeast Saccharomyces cerevisiae

Zazulya A., Semkiv M., Dmytruk K., Sibirny A.

  • Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov Street, 14/16, Lviv 79005 Ukraine

SUMMARY. Ethanol is one of the most important biotechnological compounds widely used in medicine, pharmacology, food and fuel, cosmetology and other fields. The main method of ethanol production is alcoholic fermentation using baker’s yeast Saccharomyces cerevisiae. S. cerevisiae converts glucose to ethanol very efficiently: ethanol yield is more than 90 % of the theoretical maximum. However, even a slight increase in ethanol yield in an industrial-scale alcoholic fermentation can produce an additional hundred million tons of ethanol each year. In this work, to increase the production of ethanol with industrial S. cerevisiae strains, we applied the method of adaptive evolution: yeast cells were cultivated long-term in an environment with high concentrations of glucose and ethanol. Most of the adapted strains obtained were characterized by increased ethanol production during alcoholic fermentation in comparison with the original strains.

Keywords:

TSitologiya i Genetika
2020, vol. 54, no. 5, 27-38

Current Issue
Cytology and Genetics
2020, vol. 54, no. 5, 398–407,
doi: 10.3103/S0095452720050059

Full text and supplemented materials

References

1. Dmytruk K.V., Kurylenko O.O., Ruchala J., Abbas, C.A., and Sibirny A.A. Genetic Improvement of Conventional and Nonconventional Yeasts for the Production of First- and Second-Generation Ethanol, Springer International Publishing, 2017. https://doi.org/10.1007/978-3-319-58829-2_1

2. Basso, L.C. Basso, T.O., and Rocha, S.N., Ethanol Production in Brazil: The Industrial Process and Its Impact on Yeast Fermentation, InTech, 2011.

3. Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M.F., Liden, G., and Zacchi, G., Bio-ethanol—the fuel of tomorrow from the residues of today, Trends Biotechnol., 2006, vol. 24, no. 12, pp. 549–556. https://doi.org/10.1016/j.tibtech.2006.10.004

4. Dos Santos, M.A., Energy Analysis of Crops Used for Producing Ethanol and CO2 Emissions, The International Virtual Institute of Global Change (IVIG), 1997.

5. Douglas Crabb, W. and Mitchinson, C., Enzymes involved in the processing of starch to sugars, Trends Biotechnol., 1997, vol. 15, pp. 349–352. https://doi.org/10.1016/S0167-7799(97)01082-2

6. Madson, P.W. and Monceaux D.A., Fuel Ethanol Production, Nottingham: University Press, 1999.

7. Guo, Z.P., Zhang, L. Ding, Z.Y., and Shi, G.Y., Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance, Metab. Eng., 2011, vol. 13, no. 1, pp. 49–59. https://doi.org/10.1016/j.ymben.2010.11.003

8. Zhang, L., Tang, Y., Guo, Z.P., Ding, Z.Y., and Shi, G.Y., Improving the ethanol yield by reducing glycerol formation using cofactor regulation in Saccharomyces cerevisiae,Biotechnol. Lett., 2011, vol. 33, no. 7, pp. 1375–1380. https://doi.org/10.1007/s10529-011-0588-6

9. Semkiv, M.V., Dmytruk, K.V., Abbas, C.A., and Sibirny, A.A., Increased ethanol accumulation from glucose via reduction of ATP level in a recombinant strain of Saccharomyces cerevisiae overexpressing alkaline phosphatase, BMC Biotechnol., 2014, vol. 14, p. 42. https://doi.org/10.1186/1472-6750-14-42

10. Semkiv, M.V., Dmytruk, K.V., Abbas, C.A., and Sibirny, A.A., Activation of futile cycles as an approach to increase ethanol yield during glucose fermentation in Saccharomyces cerevisiae, Bioengineered, 2016, vol. 7, no. 2, pp. 106–111. https://doi.org/10.1080/21655979.2016.1148223

11. Grossmann, M., Kießling, F., Singer, J., Schoeman, H., Schröder, M.-B., and von Wallbrunn, C., Genetically modified wine yeasts and risk assessment studies covering different steps within the wine making process, Ann. Microbiol., 2011, vol. 61, no. 1, pp. 103–115. https://doi.org/10.1007/s13213-010-0088-2

12. Chambers, P.J., Bellon, J.R., Schmidt, S.A., Varela, C., and Pretorius, I.S., Non-Genetic Engineering Approaches for Isolating and Generating Novel Yeasts for Industrial Applications, Springer Netherlands, 2009. https://doi.org/10.1007/978-1-4020-8292-4_20

13. Cakar, Z.P., Seker, U.O., Tamerler, C., Sonderegger, M., and Sauer, U., Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae,FEMS Yeast Res., 2005, vol. 5, no. 6–7, pp. 569–578. https://doi.org/10.1016/j.femsyr.2004.10.010

14. Kuyper, M., Toirkens, M.J., Diderich, J.A., Winkler, A.A., van Dijken, J.P., and Pronk, J.T., Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain, FEMS Yeast Res., 2005, vol. 5, no. 10, pp. 925–934. https://doi.org/10.1016/j.femsyr.2005.04.004

15. Higgins, V.J., Bell, P.J., Dawes, I.W., and Attfield, P.V., Generation of a novel Saccharomyces cerevisiae strain that exhibits strong maltose utilization and hyperosmotic resistance using nonrecombinant techniques, App. Environ. Microbiol., 2001, vol. 67, no. 9, pp. 4346–4348. https://doi.org/10.1128/AEM.67.9.4346-4348.2001

16. Dmytruk K.V., Kshanovska, B.V., Abbas, C.A., and Sibirny, A.A., New methods for positive selection of yeast ethanol overproducing mutants, Bioethanol, 2016, vol. 2, pp. 24–31. https://doi.org/10.1515/bioeth-2015-0003

17. de Oliva-Neto, P., Dorta, C., Carvalho, A.F., de Lima, V.M.G., and da Silva, D.F., The Brazilian Technology of Fuel Ethanol Fermentation—Yeast Inhibition Factors and New Perspectives to Improve the Technology, ©FORMATEX, 2013.

18. Chapman, C. and Bartley, W., The kinetics of enzyme changes in yeast under conditions that cause the loss of mitochondria, Biochem. J., 1968, vol. 107, no. 4, pp. 455–465. https://doi.org/10.1042/bj1070455

19. Beaven, M.J., Charpentier, C., and Rose, A.H., Production and tolerance of ethanol in relation to phospholipid fatty-acyl composition in Saccharomyces cerevisiae NCYC 431, Microbiology, 1982, vol. 128, no. 7, pp. 1447–1455. https://doi.org/10.1099/00221287-128-7-1447

20. Millar, D.G., Griffiths-Smith, K., Algar, E., and Scopes, R.K., Activity and stability of glycolytic enzymes in the presence of ethanol, Biotechnol. Lett., 1982, vol. 4, no. 9, pp. 601–606. https://doi.org/10.1007/BF00127792

21. Loureiro-Dias, M.C. and Peinado, J.M., Effect of ethanol and other alkanols on the maltose transport system of Saccharomyces cerevisiae,Biotechnol. Lett., 1982, vol. 4, no. 11, pp. 721–724. https://doi.org/10.1007/BF00-134666

22. Ingram, L.O., Adaptation of membrane lipids to alcohols, J. Bacteriol., 1976, vol. 125, no. 2, pp. 670–678. PMCID: PMC236128.

23. Moon, M.H., Ryu, J., Choeng, Y.-H., Hong, S.-K., Kang, H.A., and Chang, Y.K., Enhancement of stress tolerance and ethanol production in Saccharomyces cerevisiae by heterologous expression of a trehalose biosynthetic gene from Streptomyces albus,Biotechnol. Bioproc. Eng., 2012, vol. 17, no. 5, pp. 986–996. https://doi.org/10.1007/s12257-012-0148-5

24. Qiu, Z. and Jiang, R., Improving Saccharomyces cerevisiae ethanol production and tolerance via RNA polymerase II subunit Rpb7, Biotechnol. Biof., 2017, vol. 10, p. 125. https://doi.org/10.1186/s13068-017-0806-0

25. Jung, Y.J. and Park, H.D., Antisense-mediated inhibition of acid trehalase (ATH1) gene expression promotes ethanol fermentation and tolerance in Saccharomyces cerevisiae,Biotechnol. Lett., 2005, vol. 27, nos. 23–24, pp. 1855–1859. https://doi.org/10.1007/s10529-005-3910-3

26. Cao, T.S., Chi, Z., Liu, G.L., and Chi, Z.M., Expression of TPS1 gene from Saccharomycopsis fibuligera A11 in Saccharomyces sp. W0 enhances trehalose accumulation, ethanol tolerance, and ethanol production, Mol. Biotechnol., 2014, vol. 56, no. 1, pp. 72–78. https://doi.org/10.1007/s12033-013-9683-3

27. Thammasittirong, S.N.-R., Thirasaktana, T., Thammasittirong, A., and Srisodsuk, M., Improvement of Ethanol Production by Ethanol-Tolerant Saccharomyces cerevisiae UVNR56, SpringerPlus, 2013. https://doi.org/10.1186/2193-1801-2-583

28. Argueso, J.L., Carazzolle, M.F., Mieczkowski, P.A., Duarte, F.M., Netto, O.V. Missawa, S.K., Galzerani, F., Costa, G.G., Vidal, R.O., Noronha, M.F., Dominska, M., Andrietta, M.G., Andrietta, S.R., Cunha, A.F., Gomes, L.H., Tavares, F.C., Alcarde, A.R., Dietrich, F.S., McCusker, J.H., Petes, T.D., and Pereira, G.A., Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production, Genome Res., 2009, vol. 19, no. 12, pp. 2258–2270. https://doi.org/10.1101/gr.091777.109

29. Lin, Y. and Tanaka, S., Ethanol fermentation from biomass resources: current state and prospects, Appl. Microbiol. Biotechnol., 2006, vol. 69, no. 6, pp. 627–642. https://doi.org/10.1007/s00253-005-0229-x

30. Esteve-Zarzoso, B., Belloch, C., Uruburu, F., and Querol, A., Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers, Int. J. Syst. Bacteriol., 1999, vol. 49, no. 1, pp. 329–337. https://doi.org/10.1099/00207713-49-1-329