|
|||
|
![]()
In Ukrainian Export citations UNIMARC BibTeX RIS Molecular mechanisms of chondro- and osteogenesis disorders during osteoarthritis and the ways of correcting themReview SUMMARY. The investigations, dedicated to the problem of regulating the process of chondrogenesis and cell engineering of the cartilage tissue, continue to be relevant nowadays, taking into consideration the degree of increasing incidence of osteodegenerative orthopedic diseases. The analysis of scientific literature was conducted to review molecular changes, developing in cartilage tissue during osteoarthritis (ОА). The search in international and domestic databases was performed by key words. Forty references, relevant to the topic, were selected. Many biological regulators were identified and analyzed for the possibility of including them into the processes of osteo- and chondrogenesis. The study of OA biomarkers and subsequent regulation of chondrogenesis using different molecules is the future of cartilage tissue cell engineering, aimed at restoring the cartilage, damaged by OA. Key words: chondrocytes, stem cells, differentiation
Tsitologiya i Genetika 2020, vol. 54, no. 4, pp. 80-86
E-mail: adelinatorgomyan References1. Li, G., Yin, J., Gao, G., Cheng T.S., Pavlos, N.J., Zhang, C., and Zheng, M.H., Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes, Arthrit. Res. Ther., 2013, vol. 15, p. 223. https://doi.org/10.1186/ar4405 2. Ryd, L., Brittberg, M., Eriksson, K., Jurvelin, J.S., Lindahl, A., Marlovits, S., Moller, P., Richardson, J.B., Steinwachs, M., and Zenobi-Wrong, M., Pre-osteoarthritis: definition and diagnosis of an elusive clinical entity, Cartilage, 2015, vol. 6, no. 3, pp. 156–165. https://doi.org/10.1177/1947603515586048 3. Katayama, K., Kuriki, M., Kamiya, T., Tochigi, Y., and Suzuki, H., Giantin is required for coordinated production of aggrecan, link protein and type XI collagen during chondrogenesis, Biochem. Biophys. Res. Commun., 2018, vol. 499, no. 3, pp. 459–465. https://doi.org/10.1016/j.bbrc.2018.03.163 4. Ikehata, M., Yamada, A., Fujita, K., Yoshida, Y., Kato, T., Sakashita, A., Ogata, H., Iijima, T., Kuroda, M., Chikazu, D, and Kamijo, R., Cooperation of Rho family proteins Rac1 and Cdc42 in cartilage development and calcified tissue formation, Biochem. Biophys. Res. Commun., 2018, vol. 500, no. 3, pp. 525–529. https://doi.org/10.1016/j.bbrc.2018.04.032 5. Tan, Q., Chen, B., Wang, Q., Xu, W., Wang, Y., Lin, Z., Luo, F., Huang, S., Zhu, Y., Su, N., Jin, M., Li, C., Kuang, L., Qi, H., Ni, Z., Wang, Z., Luo, X., Jiang, W., Chen, H., Chen, S., Li, F., Zhang, B., Huang, J., Zhang, R., Jin K1, Xu, X., Deng, C., Du, X., Xie, Y., and Chen, L., A novel FGFR1-binding peptide attenuates the degeneration of articular cartilage in adult mice, Osteoarthritis Cartilage, 2018, vol. 18, pp. 31 434–31 431. pii: S1063-4584.https://doi.org/10.1016/j.joca.2018.08.012 6. Roh, J.S. and Sohn, D.H., Damage-associated molecular patterns in inflammatory diseases, Immun. Netw., 2018, vol. 18, no. 4, e27.https://doi.org/10.4110/in.2018.18.e27 7. Zhong, D., Zhang, M., Yu, J., and Luo, Z.P., Local tensile stress in the development of posttraumatic osteoarthritis, BioMed Res. Int., 2018, vol. 2018, Article ID 4210353. https://doi.org/10.1155/2018/421035 8. Osiecka-Iwan, A., Hyc, A., Radomska-Lesniewska, D.M., Rymarczyk, A., and Skopinski, P., Antigenic and immunogenic properties of chondrocytes, implications for chondrocyte therapeutic transplantation and pathogenesis of inflammatory and degenerative joint diseases, Cent. Eur. J. Immunol., 2018, vol. 43, no. 2, pp. 209–219. https://doi.org/10.5114/ceji.2018.77392 9. Kraus, V.B., Nevitt, M., and Sandell, L.J., Summary of the OA biomarkers workshop 2009 – biochemical biomarkers: biology, validation, and clinical studies, Osteoarthritis Cartilage, 2010, vol. 18, no. 6, pp. 742–745. https://doi.org/10.1016/j.joca.2010.02.014 10. Kraus, V.B., Waiting for action on the osteoarthritis front, Curr. Drug. Targets, 2010, vol. 11, no. 5, pp. 518–20. PMID 20199398. 11. Freeston, J.E., Garnero, P., Wakefield, R.J., Hensor, E.M., Conaghan, P.G., and Emery, P., Urinary type II collagen terminal peptide is associated with synovitis and predicts structural bone loss in very early inflammatory arthritis, Ann. Rheum. Dis., 2011, vol. 70, no. 2, pp. 331–333.https://doi.org/10.1136/ard.2010.129304 12. Duan, Y., Hao, D., Li, M. Wu, Z., Li, D., Yang, X., and Qui, G., Increased synovial fluid visfatin is positively linked to cartilage degradation biomarkers in osteoarthritis, Rheumatol. Int., 2012, vol. 32, no. 4, pp. 985–990. https://doi.org/10.1007/s00296-010-1731-8 13. Ishijima, M., Watari, T., Naito, K., Kaneko, H., Futami, I., Ioshimuda-Ishida, K., Tomonaga, A., Yamaguchi, H., Yamamoto, T., Nagaoka, I., Kurosawa, H., Poole, R.A., and Kaneko, K., Relationships between biomarkers of cartilage, bone, synovial metabolism and knee pain provide insights into the origins of pain in early knee osteoarthritis, Arthritis Res. Ther., 2011, vol. 13, no. 1, R22. https://doi.org/10.1186/ar3246 14. Kokebie, R., Aggarwal, R., Lidder, S., Hakimian, A., Ruegel, D.C., Block, J.A., and Chubinskaya, S., The role of synovial fluid markers of catabolism and anabolism in osteoarthritis, rheumatoid arthritis and asymptomatic organ donors, Arthritis Res. Ther., 2011, vol. 13, no. 2, R501. https://doi.org/10.1186/ar3293 15. Patra, D. and Sandell, L., Evolving biomarkers in osteoarthritis, J. Knee Surg., 2011, vol. 24, pp. 241–250. PMID .22303753 16. Occhetta, P., Pigeot, S., Rasponi, M., Dasen, B., Mehrkens, A., Ullrich, T., Kramer, I., Guth-Gundel, S., Barbero, A., and Martin, I., Developmentally inspired programming of adult human mesenchymal stromal cells toward stable chondrogenesis, Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, no. 18, pp. 4625–4630. https://doi.org/10.1073/pnas.1720658115 17. Handorf, A.M., Chamberlain, C.S., and Li, W.J., Endogenously produced Indian hedgehog regulates TGFb-driven chondrogenesis of human bone marrow stromal/stem cells, Stem. Cells Dev., 2015, vol. 24, pp. 995–1007. https://doi.org/10.1089/scd.2014.0266 18. Oseni, A.O., Crowley, C., Boland, M.Z., Butler, P.E., and Seifalian, A.M., Cartilage tissue engineering: the application of nanomaterials and stem cell technology, Tiss. Eng. Regen. Med., 2011. https://doi.org/10.5772/22453 19. Correa, D., Somoza, R.A., Lin, P., Greenberg, S., Rom, E., Duesler, L., Welter, J.F., Yayon, A., and Caplan, A.I., Sequential exposure to fibroblast growth factors (FGF) 2, 9 and 18 enhances hMSC chondrogenic differentiation, Osteoarthr. Cartil., 2015, vol. 23, pp. 443–453. https://doi.org/10.1016/j.joca.2014.11.013 20. Hellingman, C.A., Davidson, E.N., Koevoet, W., Vitters, E.L., van den Berg, W.B., van Osch, G.J.V.M., and van der Kraan, P.M., Smad signaling determines chondrogenic differentiation of bone-marrow-derived mesenchymal stem cells: inhibition of Smad1/5/8P prevents terminal differentiation and calcification, Tiss. Eng. Part. A, 2011, vol. 17, pp. 1157–1167. https://doi.org/10.1089/ten.TEA.2010.0043 21. Richter W., Bock, R., Hennig, T., and Weiss, S., Influence of FGF-2 and PTHrP on chondrogenic differentiation of human mesenchymal stem cells, J. Bone Jt. Surg. Br., 2009, vol. 91B, suppl. III, p. 444. https://doi.org/10.1302/0301-620X.91BSUPP_III.0910444c 22. Narcisi, R., Cleary, M.A., Brama, P.A.,Hoogduijn, M.J., Tuysuz, N., Berge, D., and van Osch, G.J.V.M., Long-term expansion, enhanced chondrogenic potential, and suppression of endochondral ossification of adult human MSCs via WNT signaling modulation, Stem. Cell Rep., 2015, vol. 4, pp. 459–472. https://doi.org/10.1016/j.stemcr.2015.01.017 23. Correa, D., Somoza, R.A., Lin, P., Greenberg, S., Rom. E., Duesler, L., Welter, J.F., Yayon, A., and Caplan, A.I., Sequential exposure to fibroblast growth factors (FGF) 2, 9 and 18 enhances hMSC chondrogenic differentiation, Osteoarthritis Cartillage, 2015, vol. 23, pp. 443–453. https://doi.org/10.1016/j.joca.2014.11.013 24. Dai, J., Wang, J., Lu, J., Zou, D., Sun, H., Dong, Y., Yu, H., Zhang, L., Yang, T., Zhang, X., Wang, X., and Shen, G., The effect of co-culturing costal chondrocytes and dental pulp stem cells combined with exogenous FGF9 protein on chondrogenesis and ossification in engineered cartilage, Biomaterials, 2012, vol. 33, pp. 7699–7711. https://doi.org/10.1016/j.biomaterials.2012.07.020 25. Govindarajan, V. and Overbeek, P.A., FGF9 can induce endochondral ossification in cranial mesenchyme, BMC Dev. Biol., 2006, vol. 6, p. 7. https://doi.org/10.1186/1471-213X-6-7 26. Jiang, X., Huang, X., Jiang, T., Zheng, L., Zhao, J., and Zhang, X., The role of Sox9 in collagen hydrogel-mediated chondrogenic differentiation of adult mesenchymal stem cells (MSCs), Biomater. Sci., 2018, vol. 6, no. 6, pp. 1556–1568. https://doi.org/10.1039/c8bm00317c 27. Cleary, M.A., van Osch, G.J., Brama, P.A., Hellingman, C.A., and Narcisi, R., FGF, TGFb and Wnt crosstalk: embryonic to in vitro cartilage development from mesenchymal stem cells, J. Tiss. Eng. Regen., 2015, vol. 9, pp. 332–342. https://doi.org/10.1002/term.1744 28. Long, F. and Ornitz, D.M., Development of the endochondral skeleton, Cold Spring Harbor Perspect. Biol., 2013, vol. 5, a008334. https://doi.org/10.1101/cshperspect.a008334 29. Augustyniak, E., Trzeciak, T., Richter, M., Kaczmarczyk, J., and Suchorska, W., The role of growth factors in stem cell-directed chondrogenesis: a real hope for damaged cartilage regeneration, Int. Orthop., 2015, vol. 39, pp. 995–1003, https://doi.org/10.1007/s00264-014-2619-0 30. Madry, H., Rey-Rico, A., Venkatesan, J.K., John-Stone, B., and Cucchiarini, M., Transforming growth factor Beta-releasing scaffolds for cartilage tissue engineering, Tiss. Eng. Part B Rev., 2014, vol. 20, pp. 106–125. https://doi.org/10.1089/ten.TEB.2013.0271 31. Mu, Y., Gudey, S.K., and Landström, M., Non-Smad signaling pathways, Cell Tiss. Res., 2012, vol. 347, pp. 11–20. https://doi.org/10.1007/s00441-011-1201-y 32. Kamel, G., Hoyos, T., Rochard, L., Dougherty, M., Kong, Y., Tse, W., Shubinets, V., Grimaldi, M., and Liao, EC., Requirements for frzb and fzd7a in cranial neural crest convergence and extension mechanisms during zebrafish palate and jaw morphogenesis, Dev. Biol., 2013, vol. 381, pp. 423–433. https://doi.org/10.1016/j.ydbio.2013.06.012 33. Matsumoto, S., Fumoto, K., Okamoto, T., Kaibuchi, K., and Kikuchi, A., Binding of APC and di-shevelled mediates Wnt5a-regulated focal adhesion dynamics in migrating cells, EMBO J., 2010, vol. 29, pp. 1192–1204. https://doi.org/10.1038/emboj.2010.26 34. Daoud, G., Kempf, H., Kumar, D., Kozhemyakina, E., Holowacz, T., Kim, D.W., Ionescu, A., and Lassar, A.B., BMP-mediated induction of GATA4/ 5/6 blocks somitic responsiveness to SHH, Development, 2014, vol. 141, pp. 3978–3987. https://doi.org/10.1242/dev.111906 35. Tsushima, H., Tang, Y.J., Puviindran, V., Hsu, S.C., Nadesan, P., Yu, C., Zhang, H., Mirando, A.J., Hilton, M.J., and Alman, B.A., Intracellular biosynthesis of lipids and cholesterol by Scap and Insig in mesenchymal cells regulates long bone growth and chondrocyte homeostasis, Development, 2018, vol. 145, no. 13, dev162396. https://doi.org/10.1242/dev.162396 36. Handorf, A.M., Chamberlain, C.S., and Li, W.J., Endogenously produced Indian hedgehog regulates TGFb-driven chondrogenesis of human bone marrow stromal/stem cells, Stem. Cells Dev., 2015, vol. 24, pp. 995–1007. https://doi.org/10.1089/scd.2014.0266 37. Rutkowski, T.P., Kohn, A., Sharma, D., Ren, Y., Mirando, A.J., and Hilton, M.J., HES factors regulate specific aspects of chondrogenesis and chondrocyte hypertrophy during cartilage development, J. Cell Sci., 2016, vol. 129, no. 11, pp. 2145–2155. https://doi.org/10.1242/jcs.181271 38. Yang, A., Lu, Y., Xing, J., Li, Z., Yin, X., Dou, C., Dong, S., Luo, F., Xie, Z., Hou, T., and Xu, J., IL-8 enhances therapeutic effects of BMSCs on bone regeneration via CXCR2-mediated PI3k/Akt signaling pathway, Cell Physiol. Biochem., 2018, vol. 48, no. 1, pp. 361–370. https://doi.org/10.1159/000491742 39. Sarem, M., Heizmann, M., Barbero, A., Martin, I., and Shastri, V.P., Hyperstimulation of CaSR in human MSCs by biomimetic apatite inhibits endochondral ossification via temporal down-regulation of PTH1R, Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, no. 27, pp. 6135–6144. https://doi.org/10.1073/pnas.1805159115 40. Taheem, D.K., Foyt, D.A., Loaiza, S., Ferreira, S.A., Ilic, D., Auner, H.W., Grigoriadis, A.E., Jell, G., and Gentleman, E., Differential regulation of human bone marrow mesenchymal stromal cell chondrogenesis by hypoxia inducible factor-1α hydroxylase inhibitors, Stem. Cells, 2018, vol. 36, no. 9, pp. 1380–1392. https://doi.org/10.1002/stem.2844 |
|
|||
Coded & Designed by Volodymyr Duplij | Modified 01.12.23 |