ISSN 0564-3783  
Main page
Preview papers  
Information to authors
Editorial board
Standard version

In Ukrainian

Export citations   UNIMARC   BibTeX   RIS

Molecular mechanisms of chondro- and osteogenesis disorders during osteoarthritis and the ways of correcting them

Torgomyan A.L., Saroyan M.Yu.


SUMMARY. The investigations, dedicated to the problem of regulating the process of chondrogenesis and cell engineering of the cartilage tissue, continue to be relevant nowadays, taking into consideration the degree of increasing incidence of osteodegenerative orthopedic diseases. The analysis of scientific literature was conducted to review molecular changes, developing in cartilage tissue during osteoarthritis (ОА). The search in international and domestic databases was performed by key words. Forty references, relevant to the topic, were selected. Many biological regulators were identified and analyzed for the possibility of including them into the processes of osteo- and chondrogenesis. The study of OA biomarkers and subsequent regulation of chondrogenesis using different molecules is the future of cartilage tissue cell engineering, aimed at restoring the cartilage, damaged by OA.

Key words: chondrocytes, stem cells, differentiation

Tsitologiya i Genetika 2020, vol. 54, no. 4, pp. 80-86

E-mail: adelinatorgomyan

Torgomyan A.L., Saroyan M.Yu. Molecular mechanisms of chondro- and osteogenesis disorders during osteoarthritis and the ways of correcting them, Tsitol Genet., 2020, vol. 54, no. 4, pp. 80-86.

In "Cytology and Genetics":
A. Torgomyan & M. Saroyan Molecular Mechanisms of Chondro- and Osteogenesis Disturbance in Osteoarthritis and Ways of Their Correction, Cytol Genet., 2020, vol. 54, no. 4, pp. 347–352
DOI: 10.3103/S0095452720040118


1. Li, G., Yin, J., Gao, G., Cheng T.S., Pavlos, N.J., Zhang, C., and Zheng, M.H., Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes, Arthrit. Res. Ther., 2013, vol. 15, p. 223.

2. Ryd, L., Brittberg, M., Eriksson, K., Jurvelin, J.S., Lindahl, A., Marlovits, S., Moller, P., Richardson, J.B., Steinwachs, M., and Zenobi-Wrong, M., Pre-osteoarthritis: definition and diagnosis of an elusive clinical entity, Cartilage, 2015, vol. 6, no. 3, pp. 156–165.

3. Katayama, K., Kuriki, M., Kamiya, T., Tochigi, Y., and Suzuki, H., Giantin is required for coordinated production of aggrecan, link protein and type XI collagen during chondrogenesis, Biochem. Biophys. Res. Commun., 2018, vol. 499, no. 3, pp. 459–465.

4. Ikehata, M., Yamada, A., Fujita, K., Yoshida, Y., Kato, T., Sakashita, A., Ogata, H., Iijima, T., Kuroda, M., Chikazu, D, and Kamijo, R., Cooperation of Rho family proteins Rac1 and Cdc42 in cartilage development and calcified tissue formation, Biochem. Biophys. Res. Commun., 2018, vol. 500, no. 3, pp. 525–529.

5. Tan, Q., Chen, B., Wang, Q., Xu, W., Wang, Y., Lin, Z., Luo, F., Huang, S., Zhu, Y., Su, N., Jin, M., Li, C., Kuang, L., Qi, H., Ni, Z., Wang, Z., Luo, X., Jiang, W., Chen, H., Chen, S., Li, F., Zhang, B., Huang, J., Zhang, R., Jin K1, Xu, X., Deng, C., Du, X., Xie, Y., and Chen, L., A novel FGFR1-binding peptide attenuates the degeneration of articular cartilage in adult mice, Osteoarthritis Cartilage, 2018, vol. 18, pp. 31 434–31 431. pii: S1063-4584.

6. Roh, J.S. and Sohn, D.H., Damage-associated molecular patterns in inflammatory diseases, Immun. Netw., 2018, vol. 18, no. 4, e27.

7. Zhong, D., Zhang, M., Yu, J., and Luo, Z.P., Local tensile stress in the development of posttraumatic osteoarthritis, BioMed Res. Int., 2018, vol. 2018, Article ID 4210353.

8. Osiecka-Iwan, A., Hyc, A., Radomska-Lesniewska, D.M., Rymarczyk, A., and Skopinski, P., Antigenic and immunogenic properties of chondrocytes, implications for chondrocyte therapeutic transplantation and pathogenesis of inflammatory and degenerative joint diseases, Cent. Eur. J. Immunol., 2018, vol. 43, no. 2, pp. 209–219.

9. Kraus, V.B., Nevitt, M., and Sandell, L.J., Summary of the OA biomarkers workshop 2009 – biochemical biomarkers: biology, validation, and clinical studies, Osteoarthritis Cartilage, 2010, vol. 18, no. 6, pp. 742–745.

10. Kraus, V.B., Waiting for action on the osteoarthritis front, Curr. Drug. Targets, 2010, vol. 11, no. 5, pp. 518–20. PMID 20199398.

11. Freeston, J.E., Garnero, P., Wakefield, R.J., Hensor, E.M., Conaghan, P.G., and Emery, P., Urinary type II collagen terminal peptide is associated with synovitis and predicts structural bone loss in very early inflammatory arthritis, Ann. Rheum. Dis., 2011, vol. 70, no. 2, pp. 331–333.

12. Duan, Y., Hao, D., Li, M. Wu, Z., Li, D., Yang, X., and Qui, G., Increased synovial fluid visfatin is positively linked to cartilage degradation biomarkers in osteoarthritis, Rheumatol. Int., 2012, vol. 32, no. 4, pp. 985–990.

13. Ishijima, M., Watari, T., Naito, K., Kaneko, H., Futami, I., Ioshimuda-Ishida, K., Tomonaga, A., Yamaguchi, H., Yamamoto, T., Nagaoka, I., Kurosawa, H., Poole, R.A., and Kaneko, K., Relationships between biomarkers of cartilage, bone, synovial metabolism and knee pain provide insights into the origins of pain in early knee osteoarthritis, Arthritis Res. Ther., 2011, vol. 13, no. 1, R22.

14. Kokebie, R., Aggarwal, R., Lidder, S., Hakimian, A., Ruegel, D.C., Block, J.A., and Chubinskaya, S., The role of synovial fluid markers of catabolism and anabolism in osteoarthritis, rheumatoid arthritis and asymptomatic organ donors, Arthritis Res. Ther., 2011, vol. 13, no. 2, R501.

15. Patra, D. and Sandell, L., Evolving biomarkers in osteoarthritis, J. Knee Surg., 2011, vol. 24, pp. 241–250. PMID .22303753

16. Occhetta, P., Pigeot, S., Rasponi, M., Dasen, B., Mehrkens, A., Ullrich, T., Kramer, I., Guth-Gundel, S., Barbero, A., and Martin, I., Developmentally inspired programming of adult human mesenchymal stromal cells toward stable chondrogenesis, Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, no. 18, pp. 4625–4630.

17. Handorf, A.M., Chamberlain, C.S., and Li, W.J., Endogenously produced Indian hedgehog regulates TGFb-driven chondrogenesis of human bone marrow stromal/stem cells, Stem. Cells Dev., 2015, vol. 24, pp. 995–1007.

18. Oseni, A.O., Crowley, C., Boland, M.Z., Butler, P.E., and Seifalian, A.M., Cartilage tissue engineering: the application of nanomaterials and stem cell technology, Tiss. Eng. Regen. Med., 2011.

19. Correa, D., Somoza, R.A., Lin, P., Greenberg, S., Rom, E., Duesler, L., Welter, J.F., Yayon, A., and Caplan, A.I., Sequential exposure to fibroblast growth factors (FGF) 2, 9 and 18 enhances hMSC chondrogenic differentiation, Osteoarthr. Cartil., 2015, vol. 23, pp. 443–453.

20. Hellingman, C.A., Davidson, E.N., Koevoet, W., Vitters, E.L., van den Berg, W.B., van Osch, G.J.V.M., and van der Kraan, P.M., Smad signaling determines chondrogenic differentiation of bone-marrow-derived mesenchymal stem cells: inhibition of Smad1/5/8P prevents terminal differentiation and calcification, Tiss. Eng. Part. A, 2011, vol. 17, pp. 1157–1167.

21. Richter W., Bock, R., Hennig, T., and Weiss, S., Influence of FGF-2 and PTHrP on chondrogenic differentiation of human mesenchymal stem cells, J. Bone Jt. Surg. Br., 2009, vol. 91B, suppl. III, p. 444.

22. Narcisi, R., Cleary, M.A., Brama, P.A.,Hoogduijn, M.J., Tuysuz, N., Berge, D., and van Osch, G.J.V.M., Long-term expansion, enhanced chondrogenic potential, and suppression of endochondral ossification of adult human MSCs via WNT signaling modulation, Stem. Cell Rep., 2015, vol. 4, pp. 459–472.

23. Correa, D., Somoza, R.A., Lin, P., Greenberg, S., Rom. E., Duesler, L., Welter, J.F., Yayon, A., and Caplan, A.I., Sequential exposure to fibroblast growth factors (FGF) 2, 9 and 18 enhances hMSC chondrogenic differentiation, Osteoarthritis Cartillage, 2015, vol. 23, pp. 443–453.

24. Dai, J., Wang, J., Lu, J., Zou, D., Sun, H., Dong, Y., Yu, H., Zhang, L., Yang, T., Zhang, X., Wang, X., and Shen, G., The effect of co-culturing costal chondrocytes and dental pulp stem cells combined with exogenous FGF9 protein on chondrogenesis and ossification in engineered cartilage, Biomaterials, 2012, vol. 33, pp. 7699–7711.

25. Govindarajan, V. and Overbeek, P.A., FGF9 can induce endochondral ossification in cranial mesenchyme, BMC Dev. Biol., 2006, vol. 6, p. 7.

26. Jiang, X., Huang, X., Jiang, T., Zheng, L., Zhao, J., and Zhang, X., The role of Sox9 in collagen hydrogel-mediated chondrogenic differentiation of adult mesenchymal stem cells (MSCs), Biomater. Sci., 2018, vol. 6, no. 6, pp. 1556–1568.

27. Cleary, M.A., van Osch, G.J., Brama, P.A., Hellingman, C.A., and Narcisi, R., FGF, TGFb and Wnt crosstalk: embryonic to in vitro cartilage development from mesenchymal stem cells, J. Tiss. Eng. Regen., 2015, vol. 9, pp. 332–342.

28. Long, F. and Ornitz, D.M., Development of the endochondral skeleton, Cold Spring Harbor Perspect. Biol., 2013, vol. 5, a008334.

29. Augustyniak, E., Trzeciak, T., Richter, M., Kaczmarczyk, J., and Suchorska, W., The role of growth factors in stem cell-directed chondrogenesis: a real hope for damaged cartilage regeneration, Int. Orthop., 2015, vol. 39, pp. 995–1003,

30. Madry, H., Rey-Rico, A., Venkatesan, J.K., John-Stone, B., and Cucchiarini, M., Transforming growth factor Beta-releasing scaffolds for cartilage tissue engineering, Tiss. Eng. Part B Rev., 2014, vol. 20, pp. 106–125.

31. Mu, Y., Gudey, S.K., and Landström, M., Non-Smad signaling pathways, Cell Tiss. Res., 2012, vol. 347, pp. 11–20.

32. Kamel, G., Hoyos, T., Rochard, L., Dougherty, M., Kong, Y., Tse, W., Shubinets, V., Grimaldi, M., and Liao, EC., Requirements for frzb and fzd7a in cranial neural crest convergence and extension mechanisms during zebrafish palate and jaw morphogenesis, Dev. Biol., 2013, vol. 381, pp. 423–433.

33. Matsumoto, S., Fumoto, K., Okamoto, T., Kaibuchi, K., and Kikuchi, A., Binding of APC and di-shevelled mediates Wnt5a-regulated focal adhesion dynamics in migrating cells, EMBO J., 2010, vol. 29, pp. 1192–1204.

34. Daoud, G., Kempf, H., Kumar, D., Kozhemyakina, E., Holowacz, T., Kim, D.W., Ionescu, A., and Lassar, A.B., BMP-mediated induction of GATA4/ 5/6 blocks somitic responsiveness to SHH, Development, 2014, vol. 141, pp. 3978–3987.

35. Tsushima, H., Tang, Y.J., Puviindran, V., Hsu, S.C., Nadesan, P., Yu, C., Zhang, H., Mirando, A.J., Hilton, M.J., and Alman, B.A., Intracellular biosynthesis of lipids and cholesterol by Scap and Insig in mesenchymal cells regulates long bone growth and chondrocyte homeostasis, Development, 2018, vol. 145, no. 13, dev162396.

36. Handorf, A.M., Chamberlain, C.S., and Li, W.J., Endogenously produced Indian hedgehog regulates TGFb-driven chondrogenesis of human bone marrow stromal/stem cells, Stem. Cells Dev., 2015, vol. 24, pp. 995–1007.

37. Rutkowski, T.P., Kohn, A., Sharma, D., Ren, Y., Mirando, A.J., and Hilton, M.J., HES factors regulate specific aspects of chondrogenesis and chondrocyte hypertrophy during cartilage development, J. Cell Sci., 2016, vol. 129, no. 11, pp. 2145–2155.

38. Yang, A., Lu, Y., Xing, J., Li, Z., Yin, X., Dou, C., Dong, S., Luo, F., Xie, Z., Hou, T., and Xu, J., IL-8 enhances therapeutic effects of BMSCs on bone regeneration via CXCR2-mediated PI3k/Akt signaling pathway, Cell Physiol. Biochem., 2018, vol. 48, no. 1, pp. 361–370.

39. Sarem, M., Heizmann, M., Barbero, A., Martin, I., and Shastri, V.P., Hyperstimulation of CaSR in human MSCs by biomimetic apatite inhibits endochondral ossification via temporal down-regulation of PTH1R, Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, no. 27, pp. 6135–6144.

40. Taheem, D.K., Foyt, D.A., Loaiza, S., Ferreira, S.A., Ilic, D., Auner, H.W., Grigoriadis, A.E., Jell, G., and Gentleman, E., Differential regulation of human bone marrow mesenchymal stromal cell chondrogenesis by hypoxia inducible factor-1α hydroxylase inhibitors, Stem. Cells, 2018, vol. 36, no. 9, pp. 1380–1392.

Copyright© ICBGE 2002-2023 Coded & Designed by Volodymyr Duplij Modified 01.12.23