TSitologiya i Genetika 2020, vol. 54, no. 4, 73-79
Cytology and Genetics 2020, vol. 54, no. 4, 341–346, doi: https://www.doi.org/10.3103/S0095452720040039

Development of ukrainian breeding winter rape Brassica napus L. an effective in vitro regeneration system

Hnatiuk I.S., Varchenko O.I., Kuchuk M.V., Parii M.F., Symonenko Yu.V.

  1. Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Academika Zabolotnoho Str., 03143, Kyiv, Ukraine
  2. LTD «Ukrainian Scientific Institute of Plant Breeding» (VNIS), 30 Vasylkivska Str., 03022, Kyiv, Ukraine
  3. National University of Life and Environmental Sciences of Ukraine, 15 Heroiv Oborony Str., 03041, Kyiv, Ukraine

SUMMARY. The regeneration method of the commercial line Bn1 winter rape was optimized. Hypocotyls fragments of 6-day-old seedlings were used as explants. Regeneration occurred by organogenesis on a MS nutrient medium supplemented with 3 mg/L of benzylaminopurine and 2 mg/L of 2-isopentyladenine. All obtained regenerant plants were successfully rooted in a hormone-free nutrient medium and adapted to soil conditions. The selected vernalization conditions provided 83,93 ± 5,33 % of budding and flowering. PCR analysis using ISSR 2 and ISSR 15 markers showed that somaclonal variation does not occur in winter rape of the Bn1 line while using the proposed technique. Thus, the developed system is effective and economically viable for producing of biotechnological winter rape plants.

Keywords: winter rape, regeneration, organogenesis, growth regulators, vernalization, somaclonal variation

TSitologiya i Genetika
2020, vol. 54, no. 4, 73-79

Current Issue
Cytology and Genetics
2020, vol. 54, no. 4, 341–346,
doi: 10.3103/S0095452720040039

Full text and supplemented materials

References

1. Maheshwari, P., Selvaraj, G., and Kovalchuk, I., Optimization of Brassica napus (canola) explant regeneration for genetic transformation, New Biotechnol., 2011, vol. 29, no 1, pp. 144–155. https://doi.org/10.1016/j.nbt.2011.06.014

2. Hoang, T.G. and Raldugina, G.N., Regeneration of transgenic plants expressing the GFP gene from rape cotyledonary and leaf explants: effects of the genotype and ABA, Russ. J. Plant Physiol., 2012, vol. 59, no. 3, pp. 406–412. https://doi.org/10.1134/S1021443712030089

3. Hussain, S., Rasheed, A., Latif, M., Mahmood, T., and Saqlan Naqvi, S.M., Canola (Brassica napus L.) regeneration and transformation via hypocotyl and hypocotyl derived calli, Sarhad J. Agric., 2014, vol. 30, no. 2, pp. 165–172.

4. Bhalla, P.L. and Singh, M.B., Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea,Nat. Prot., 2008, vol. 3, no. 2, pp. 181–189. https://doi.org/10.1038/nprot.2007.527

5. Mashayekhi, M., Shakib, A.M., Ahmad-Raji, M., and Ghasemi Bezdi, K., Gene transformation potential of commercial canola (Brassica napus L.) cultivars using cotyledon and hypocotyl explants, Afr. J. Biotechnol., 2008, vol. 7, no. 24, pp. 4459–4463.

6. Rahnama, H. and Sheykhhasan, M., Transformation and light inducible expression of cry1Ab gene in oilseed rape (Brassica napus L.), J. Sci., 2016, vol. 27, no. 4, pp. 313–319.

7. Bates, R., Craze, M., and Wallington, E.J., Agrobacterium-mediated transformation of oilseed rape (Brassica napus), Curr. Prot. Plant Biol., 2017, vol. 2, pp. 287–298. https://doi.org/10.1002/cppb.20060

8. Ikeuchi, M., Ogawa, Y., Iwase, A., and Sugimoto, K., Plant regeneration: cellular origins and molecular mechanisms, Development, 2016, vol. 143, no. 9, pp. 1442–1451. https://doi.org/10.1242/dev.134668

9. Lone, J.A., Gupta, S.K., Wani, S.H., Bhat, M.A., and Lone, R.A., In vitro regeneration studies in Brassica napus with response to callus induction frequency and regeneration frequency, Int. J. Agric., Environ. Biotechnol., 2016, vol. 9, no. 5, pp. 755–761. https://doi.org/10.5958/2230-732X.2016.00098.X

10. Akter, S., Mollika, S.R., Sarker, R.H., and Hoque, M.I., Agrobacterium-mediated genetic transformation of two varieties of Brassica juncea (L.) using marker genes, Plant Tiss. Cult. Biotechnol., 2016, vol. 26, no. 1, pp. 55–65. https://doi.org/10.3329/bjar.v34i2.5802

11. Liu, X.X., Lang, S.R., Su, L.Q., Liu, X., and Wang, X.F., Improved Agrobacterium-mediated transformation and high efficiency of root formation from hypocotyl meristem of spring Brassica napus “Precocity” cultivar, Genet. Mol. Res., 2015, vol. 14, no. 4, pp. 16 840–16 855. https://doi.org/10.4238/2015

12. Hocheva, E.A., Sakhno, L.O., and Kuchuk, M.V., Method for producing transformed rape plants by method of agrobacterial transformation, UA Patent no. u200811768 model 39 205, 2009, Bull. 3.

13. Ravanfar, S.A., Orbovic, V., Moradpour, M., Abdul Aziz, M., Karan, R., Wallace, S., and Parajuli, S., Improvement of tissue culture, genetic transformation, and applications of biotechnology to Brassica,Biotechnol. Genet. Eng. Rev., 2017, vol. 33, no. 1, pp. 1–25. https://doi.org/10.1080/02648725.2017.1309821

14. Bairu, M.W., Aremu, A.O, and Staden, J., Somaclonal variation in plants: causes and detection methods, Plant Growth Regul., 2010, vol. 63, no. 2, pp. 147–173. https://doi.org/10.1007/s10725-010-9554-x

15. Reddy, M.P., Sarla, N., and Siddiq, E.A., Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding, Euphytica, 2002, vol. 128, pp. 9–17. https://doi.org/10.1023/A:1020691618797

16. Murashige, T. and Skoog, F., A revised medium for rapid growth and bio assays with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, pp. 473–497.

17. Rogers, S.O. and Bendich, A.J., Extraction of total cellular DNA from plants, algae and fungi, Plant Mol. Biol. Man., 1994, pp. 183–190. https://doi.org/10.1007/978-94-011-0511-8_12

18. Godwin, I., Aitken, E., and Smith, L., Application of inter simple sequence repeat (ISSR) markers to plant genetics, Electrophoresis, 1997, vol. 18, no. 9, pp. 1524–1528. https://doi.org/10.1002/elps.1150180906

19. Mahjooba, B., Zarinib, H.N., Hashemia, S.H., and Shamasbia, F.V., Comparison of ISSR, IRAP and REMAP markers for assessing genetic diversity in different species of Brassica sp., Russ. J. Genet., 2016, vol. 52, no. 12, pp. 1272–81. https://doi.org/10.1134/s1022795416120073

20. Debergh, P.C. and Zimmerman, R.H., Micropropagation: Technology and Application, Dordrecht: Kluwer Academic, 1991.

21. Savelieva, E.M. and Tarakanov, I.G., Control of flowering in canola plants with various response to photoperiodic and low-temperature induction, Izv. Timiryaz. Agricult. Acad., 2014, vol. 2, pp. 57–68.

22. Filek, M., Koscielniak, J., Macháčková, I., and Krekule, J., Generative development of winter rape (Brassica napus L.)—the role of vernalization, Int. J. Plant Dev. Biol., 2007, vol. 1, no. 1, pp. 57–63.

23. Waalen, W.M., Stavang, J.A., Olsen, J.E., and Rognli, O.A., The relationship between vernalization saturation and the maintenance of freezing tolerance in winter rapeseed, Environ. Exp. Bot., 2014, vol. 106, pp. 164–173. https://doi.org/10.1016/j.envexpbot.2014.02.012

24. Sakhno, L.A., Gocheva, E.A., Komarnitskii, I.K., and Kuchuk, N.V., Stable expression of the promoterless bar gene in transformed rapeseed plants, Cytol. Genet., 2008, vol. 42, no. 1, pp. 21–28.https://doi.org/10.1007/s11956-008-1003-7