TSitologiya i Genetika 2020, vol. 54, no. 6, 54-64
Cytology and Genetics 2020, vol. 54, no. 6, 546–554, doi: https://www.doi.org/10.3103/S0095452720060043

Study of a spring triticale collection concerning its resistance to leaf and stem rusts using allele-specific markers

Yerzhebayeva R.S., Bazylova T.A., Babissekova D.I., Amangeldiyeva A.A., Tajibayev D., Ydyrys A.

  • LLP «Kazakh Research Institute of Agriculture and Plant growing», 040909, Republic of Kazakhstan, Almaty Region, Almalybak v., Yerlepesov st., 1

SUMMARY. Development and use of rust-resistant varieties is the most environmentally-friendly and effective way to pro-tect wheat and triticale crops. To successfully select spring triticale for its rust resistance, it is necessary to have genetic material with effective genes. In order to identify carriers of leaf and stem rust resistance genes, a collection of spring triticale (86 samples) was studied using molecular markers and phytopathology methods. In artificial inoculation study, 81 % of samples in the spring triticale collection demonstrated high resistance (0R) to a stem rust population. 19 samples that showed resistance (0–5 %R) to the leaf rust population were selected. Identification of the collection using DNA markers made it possible to isolate samples with the Sr2 gene (19 samples), Sr22 (9 samples) and Lr28 (14 samples). No carriers of the Lr9 and Lr35/Sr39 genes were found in the collection. Samples with effective Sr2 and Sr22 genes were included into crosses to create stem rust resistant domestic varieties.

Keywords: spring triticale, collection, variety, rust, resistance, gene, molecular marker

TSitologiya i Genetika
2020, vol. 54, no. 6, 54-64

Current Issue
Cytology and Genetics
2020, vol. 54, no. 6, 546–554,
doi: 10.3103/S0095452720060043

Full text and supplemented materials

Suplimented materials: 5460054s.pdf

References

1. Olivera, P.D., Pretorius, Z.A., Badebo, A., and Jin, Y., Identification of resistance to races of Puccinia graminis f. sp. tritici with broad virulence in triticale (Triticosecale), Plant Dis., 2013, vol. 97, no. 4, pp. 479–484. https://doi.org/10.1094/PDIS-05-12-0459-RE

2. Wojtowicz, A.,Wojtowicz, M., Sigvald, R., Czernecki, B., Ratajkiewicz, H., Lacka, A., Zacharczuk, M., and Pasternak, M., Assessment of the impact of climate change on the latency period of leaf rust on triticale in Poland, Acta Agric. Scand. Sect. B—Soil Plant Sci., https://doi.org/10.1080/09064710.2019.1696394

3. Herrera-Foessel, S., Singh, P.K., Singh, S., and Govindan, V., The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production, Annu. Rev. Phytopathol., 2011, vol. 49, pp. 465–481. https://doi.org/10.1146/annurev-phyto-072910-095423

4. Rsaliyev, A.S., Rsaliyev, S.S., Principal approaches and achievements in studying race composition of wheat stem rust, Vavilov. Zh. Genet. Select., 2018, vol. 22, no. 8, pp. 967–977. https://doi.org/10.18699/VJ18.439

5. Shamanin, V., Salina, E., Wanyera, R., Zelenskiy, Y., Olivera, P., and Morgounov, A., Genetic diversity of spring wheat from Kazakhstan and Russia for resistance to stem rust Ug99, Euphytica, 2016, vol. 212, no. 2, pp. 287–296. https://doi.org/10.1007/s10681-016-1769-0

6. Rsaliev, Sh.S., Koyshybaev, M.K., Morgunov, A.I., and Kolmer, D., Analysis of the composition of the stem and leaf rust of wheat in Kazakhstan, in Modern Problems of Plant Protection and Quarantine: Collection of Articles of the Int. Scientific-Practical Conf., Almaty, 2005, pp. 267–72.

7. Stakman, E.C., Stewart, D.M., and Loegering, W.Q., Identification of Physiologic Races of Puccinia graminis var. tritici., U.S. Dep. Agric. Agric. Res. Serv. E-617, U.S., Washington: Gov. Print. Office, 1962.

8. Mains, E.B. and Jackson, H.C., Physiologic specialization in the leaf rust of wheat Puccinia tritici Erikss, Phytopathology, 1926, vol. 16, no. 1, pp. 89–120.

9. Peterson, R.F., Campbell, A.B., and Hannah, A.E., A diagrammatic scale for estimating rust intensity on leaves and stems of cereals, Can. J. Res., 1948., vol. 26, no. 5, pp. 496–500.

10. Dellaporta, S.L., Wood, J., and Hicks, J.B., A plant DNA minipreparation. Version II, Plant Mol. Biol. Rep., 1983, vol. 4, pp. 19–21.

11. Schachermayer, G., Siedler, H., and Gale, M.D., Identification and localization of molecular markers linked to the Lr9 leaf rust resistance gene of wheat, Theor. Appl. Genet., 1994, vol. 88, pp. 110–115. https://doi.org/10.1007/BF00222402

12. Gupta, S.K., Charpe, A., Koul, S., Prabhu, K.V., and Haq, Q.M., Development and validation of molecular markers linked to an Aegilops umbellulata-derived leaf-rust-resistance gene, Lr9, for marker-assisted selection in bread wheat, Genome, 2005, vol. 48, no. 5, pp. 823–830. https://doi.org/10.1139/g05-051

13. Naik, S., Giill, K.S., Rao, V.S., Gupta V.S., Tam-hankar S.A., Pujar, S., Gill, B.S., and Ranjekar, P.K., Identification of a STS marker linked to an Aegilops speltoides-derived leaf rust resistance gene Lr28 in wheat, Theor. Appl. Genet., 1998, vol. 97, pp. 535–540.

14. Cherukuri, D., Gupta, S., Charpe, A., Koul, S., Prabhu, K., Singh, R.B., and Singh Haq, Q.M., Molecular mapping of Aegilops speltoides derived leaf rust resistance gene Lr28 in wheat, Euphytica, 2005, vol. 143, pp. 19–26. https://doi.org/10.1007/s10681-005-1680-6

15. Mago, R., Zhang, P., Bariana, H.S., Verlin D.C., Bansal U.K., Ellis J.G., and Dundas, I.S., Development of wheat lines carrying stem rust resistance gene Sr39 with reduced Aegilops speltoides chromatin and simple PCR markers for marker-assisted selection, Theor. Appl. Genet., 2009, vol.119, pp. 141–150. https://doi.org/10.1007/s00122-009-1146-7

16. Gold, J., Harder, D., Townley Smith, F., Aung T., and Procunier, J., Development of a molecular marker for rust resistance genes Sr39 and Lr35 in wheat breeding lines, Electron. J. Biotechnol., 1999, vol. 2, no. 1, pp. 35–40.

17. Hayden, M.J., Kuchel, H., and Chalmers, K.J., Sequence tagged microsatellites for the Xgwm533 locus provide new diagnostic markers to select for the presence of stem rust resistance gene Sr2 in bread wheat (Triticum aestivum L.), Theor. Appl. Genet., 2004, vol. 109, pp.1641–1647. https://doi.org/10.1007/s00122-004-1787

18. Mago, R., Brown-Guedira, G., Dreisigacker, S., Breen, J., Jin, Y., Singh, R., Appels. R., Lagudah. E.S., Ellis. J., and Spielmeyer, W., An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat, Theor. Appl. Genet., 2011, vol. 122, pp. 735–744. https://doi.org/10.1007/s00122-010-1482-7

19. Khan, R.R., Bariana, H.S., Dholakia, B.B., Naik, S.V., Lagu, M.D. Rathjen, A.J., Bhavani, S., and Gupta, V.S., Molecular mapping of stem and leaf rust resistance in wheat, Theor. Appl. Genet., 2005, vol. 111, pp. 846–50. https://doi.org/10.1007/s00122-005-0005-4

20. Yu, L.-X., S. Liu, J. A., Anderson, R. P., Singh, Y., Jin, J., Dubcovsky, G., Brown-Guidera, S. Bhavani, A., Morgounov, Z., He, J., and Huerta-Espino, M.E., Sorrells Haplotype diversity of stem rust resistance loci in uncharacterized wheat lines. Mol. Breed., 2010, vol. 26, pp. 667–80. https://doi.org/10.1007/s11032-010-9403-7

21. Gultyaeva, E.I., Orina, A.S., Gannibal, Ph.B., Mitrofanova, O.P., Odintsova, I.G., and Laikova, L.I., The effectiveness of molecular markers for the identification of Lr28, Lr35, and Lr47 genes in common wheat, Russ. J. Genet., 2014, vol. 50, no. 2, pp. 131–139. https://doi.org/10.1134/S1022795414020069

22. Tyryshkin, L.G., Zakharov, V.G., and Syukov, V.V., Comparative characteristics of Puccinia recondita Rob. ex Desm. syn.: Puccinia triticina Erikss. virulence in the Middle Volga region, Russ. J. Genet. Appl. Res., 2014, vol. 4, pp. 583–586.https://doi.org/10.1134/S2079059714060203

23. Gultyaeva, E.I., Shaidayuk, E.L., Kazartsev, I.A., and Aristova, M.K., Structure of Russian populations of Puccinia triticina, Plant Protec. News, 2015, vol. 3, no. 85, pp. 5–10.

24. Sochalova, L.P. and Lihenko, I.E., Evaluation of resistance to brown rust of lr-lines and varieties of wheat, isogenic in genes, under conditions of Novosibirsk region, Dostizh. Nauki Tekhn. APK, 2016, vol. 30, no. 3, pp. 46–49.

25. Gultyaeva, E.I. and Sadovaya, A.S., Breeding of wheat for resistance to brown rust in Russia, Zashch. Karantin Rast., 2014, no. 10, pp. 24–26.

26. Tyryshkin, L.G., Gul’tyaeva, Alpat’eva, N.V., and Kramer, I., Identification of effective leaf-rust resistance genes in wheat (Triticum aestivum) using STS markers. Russ. J. Genet., 2006, vol. 42, no. 6, pp. 662–666. https://doi.org/10.1134/S1022795406060111

27. Helguera, M., Khan, I.A., and Dubcovsky, J., Development of PCR markers for wheat leaf rust resistance gene Lr47, Theor. Appl. Genet., 2000, vol. 101, pp. 625–631.

28. McIntosh, R.A., Wellings, C.R., and Park, R.F., Wheat Rusts: an Atlas of Resistance Genes, Australia: CSIRO Publ., 1995.

29. Kumar, A.A. and Raghavaiah, P., Effect of the leaf rust resistance gene Lr28 on grain yield and bread-making quality of wheat, Plant Breed., 2008, vol. 123, no. 1, pp. 35–38. https://doi.org/10.1046/j.1439-0523.2003.00937.x

30. Morgounov, A., Rosseeva, L., and Koyshibayev, M., Leaf rust of spring wheat in Northern Kazakhstan and Siberia: incidence, virulence, and breeding for resistance, Aust. J. Agric. Res., 2007, vol. 58, no. 9, pp. 847–853. https://doi.org/10.1071/AR07086

31. Kroupin, P.Y., Gruzdev, I.V., Divashuk, M.G., Bazhenov, M.S., Kocheshkova, A.A., Chernook, A.G., Dudnikov, M.V., Karlov, G.I., and Soloviev, A.A., Analysis of spring triticale collection for leaf rust resistance genes with PCR markers, Russ. J. Genet., 2019, vol. 55, no. 8, pp. 945–954. https://doi.org/10.1134/S1022795419080088

32. Davoyan, R.O., Bebyakina, I.V., Davoyan, E.R., Mikov, D.S., Badaeva, E.D., Adonina, I.G., Salina, E.A., Zinchenco, A.N., and Zubanova, Y.S., Use of a synthetic form Avrodes for transfer of leaf rust resistance from Aegilops speltoides to common wheat, Vavilov. J. Genet. Breed., 2017, vol. 21, no. 6, pp. 663– 670. https://doi.org/10.18699/VJ17.284

33. Kadkhodaei, M., Dadkhodaie. A., Assad, M.T., Heidari, B., and Mostowfizadeh-Ghalamfarsa, R. Identification of the leaf rust resistance genes Lr9, Lr26, Lr28, Lr34, and Lr35 in a collection of Iranian wheat genotypes using STS and SCAR markers, J. Crop Sci. Biotech., 2012, vol. 15, no. 4, pp. 267–274. https://doi.org/10.1007/s12892-012-0035-9

34. Bipinraj, A., Honrao, B., Prashar, M., Bhardwaj, S., Rao, S., and Tamhankar, Sh., Validation and identification of molecular markers linked to the leaf rust resistance gene Lr28 in wheat, J. Appl. Genet., 2011, vol. 52, pp. 171–175. https://doi.org/10.1007/s13353-010-0026-9

35. Baranova, O.A., Lapochkina, I.F., Anisimova, A.V., Gajnullin, N.R., Iordanskayab, I.V., and Makarova, I.Yu., Identification of Sr genes in new common wheat sources of resistance to stem rust race Ug99 using molecular markers, Russ. J. Genet. Appl. Res., 2016, vol. 6, no. 3, pp. 344–350. https://doi.org/10.1134/S2079059716030011

36. Baranova, O.A., Lapochkina, I.F., Anisimova, A.V., Gajnullin, N.R., Iordanskaya, I.V., and Makarova, I.Yu., Identification of Sr genes in new common wheat sources of resistance to stem rust race Ug99 using molecular markers, Vavilov. J. Genet. Breed., 2015, vol. 19, no 3, pp. 316–322. https://doi.org/10.18699/VJ15.04137

37. Haile, J.K. and Roder, M., Status of genetic research for resistance to Ug99 race of Puccinia graminis f.sp. tritici: a review of current research and implications, Afr. J. Agr. Res., 2013, vol. 8, no. 50, pp. 6670–6680. https://doi.org/10.5897/AJAR2013.7257

38. Kokhmetova, A.M. and Atishova, M.N., Identification of stem rust resistance sources in wheat by using molecular markers, Vavilov. J. Genet. Breed., 2012, vol. 16, no. 1, pp. 132–141.