TSitologiya i Genetika 2020, vol. 54, no. 4, 46-52
Cytology and Genetics 2020, vol. 54, no. 4, 318–323, doi: https://www.doi.org/10.3103/S009545272004012X

Jasmonate signaling components’ participation in stomata closing induced by salt sress in Arabidopsis thaliana

Yastreb Т.О., Kolupaev Yu.E., Shkliarevskyi M.A., Dyachenko A.I., Dmitriev A.P.

  1. Dokuchaev Kharkiv National Agrarian University, p/o Dokuchaevske-2, 62483, Kharkiv, Ukraine
  2. Karazin Kharkiv National University, Svoboda Square, 4, 61022, Kharkiv, Ukraine
  3. Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv Academician Zabolotny St., 148, 03143, Kyiv, Ukraine

SUMMARY. To elucidate a possible role of jasmonate signaling in stomata regulation under salt stress, we studied the effects of treatment with sodium chloride (50–200 mM) and/or methyl jasmonate (200 μM) of leaves of wild-type Arabidopsis thaliana L. plants and jasmonate sig-naling mutants. A 2–3 hour exposure to NaCl induced stomata closure in wild-type plants (Col-0). The most noticeable effect was observed under the influence of 100 mM sodium chloride. At the same time, NaCl treatment of the leaves of jin1 mutant, defective in gene encoding transcription factor JIN1/MYC2, practically did not affect the stomata state. In plants of the coi1 genotype, mutants in gene encoding COI1 protein, involved in removal of repressors of jasmonate signaling transcription factors, only a slight decrease in stomatal aperture occurred under the influence of salt. A 3-hour leaf treatment with 200 μM methyl jasmonate caused a marked stomata closure in wild-type plants, but not in jin1 and coi1 mutants. With the combined effect of methyl jasmonate and salt on the leaves of Arabidopsis of three genotypes, the tendency to additional decrease in stomatal aperture was manifested only in wild-type plants. A conclusion is drawn on the role of jasmonate and its signal transduction system in the regulation of stomatal movements during salt stress.

Keywords: Arabidopsis thaliana, stomata, salt stress, jasmonate signaling, methyl jasmonate

TSitologiya i Genetika
2020, vol. 54, no. 4, 46-52

Current Issue
Cytology and Genetics
2020, vol. 54, no. 4, 318–323,
doi: 10.3103/S009545272004012X

Full text and supplemented materials

References

1. Flowers, T.J. and Colmer, T.D., Salinity tolerance in halophytes, New Phytol., 2008, vol. 179, no. 4, pp. 945–963. https://doi.org/10.1111/j.1469-8137.2008.02531.x

2. Isayenkov, S.V., Physiological and molecular aspects of salt stress in plants, Cytol. Genet., 2012, vol. 46, no. 5, pp. 302–318.https://doi.org/10.3103/S0095452712050040

3. Munns, R., Comparative physiology of salt and water stress, Plant Cell Environ., 2002, vol. 25, pp. 239–250.https://doi.org/10.1046/j.0016-8025.2001.00808.x

4. Veselov, D.S., Markova, I.V., and Kudoyarova, G.R., A response of plants to salinization and formation of salt tolerance, Usp. Sovrem. Biol., 2007, vol. 127, no. 5, pp. 482–493.

5. Roelfsema, M.R.G. and Hedrich, R., In the light of stomatal opening: new insights into “The Watergate,” New Phytol., 2005, vol. 167, no. 3, pp. 665–691.https://doi.org/10.1111/j.1469-8137.2005.01460.x

6. Very, A.A., Robinson, M.F., Michael, F., Mansfield, T.A., and Sanders, D., Guard cell cation channels are involved in Na+-induced stomatal closure in a halophyte, Plant J., 1998, vol. 14, no. 5, pp. 509–521.https://doi.org/10.1046/j.1365-313X.1998.00147.x

7. Ren, A.X. and Wang, Y.M., Effects of salt stress on stomatal differentiation and movements of amaranth (Amaranthus tricolor L.) leaves, Acta Horticul. Sin., 2010, vol. 37, no. 3, pp. 479–484.

8. Ma, Y., Zhang, We, Niu, J., Ren, Yu, and Zhang, F., Hydrogen sulfide may function downstream of hydrogen peroxide in salt stress-induced stomatal closure in Vicia faba, Funct. Plant Biol., 2018, vol. 46, no. 2, pp. 136–145. https://doi.org/10.1071/FP18096

9. Neill, S.J. and Burnett, E.C., Regulation of gene expression during water deficit stress, Plant Growth Regul., 1999, vol. 29, pp. 23–33. doi org/https://doi.org/10.1023/A:1006251631570

10. Suhita, D., Raghavendra, A.S., Kwak, J.M., and Vavasseur, A., Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure, Plant Physiol., 2004, vol. 134, no. 4, pp. 1536–1545. https://doi.org/10.1104/pp.103.032250

11. Liu, J., Hou, Z.H., Liu, G.H., Hou, L.X., and Liu, X., Hydrogen sulfide may function downstream of nitric oxide in ethylene-induced stomatal closure in Vicia faba L., J. Integr. Agricult., 2012, vol. 11, pp. 1644–1653.https://doi.org/10.1016/S2095-3119(12)60167-1

12. Miura, K., Okamoto, H., Okuma, E., Shiba, H., Ka-mada, H., Hasegawa, P.M., and Murata, Y., SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis,Plant J., 2013, vol. 73, no. 1, pp. 91–104. https://doi.org/10.1111/tpj.12014

13. Melotto, M., Underwood, W., and He, S.Y., Role of stomata in plant innate immunity and foliar bacterial diseases, Annu. Rev. Phytopathol., 2008, vol. 46, pp. 101–122. https://doi.org/10.1146/annurev.phyto.121107.104959

14. Montillet, J.L., Leonhardt, N., Mondy, S., Tranchi-mand, S., Rumeau, D., Boudsocq, M., Garcia, A.V., Douki, T., Bigear, J., Lauriere, C., Chevalier, A., Castresana, C., and Hirt, H., An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis,PLoS Biol., 2013, vol. 11, no. 3. e1 001 513. https://doi.org/10.1371/journal.pbio.1001513

15. Savchenko, T., Kolla, V.A., Wang, C.Q., Nasafi, Z., Hicks, D.R., Phadungchob, B., Chehab, W.E., Brandizzi, F., Froehlich, J., and Dehesh, K., Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought, Plant Physiol., 2014, vol. 164, no. 3, pp. 1151–1160. https://doi.org/10.1104/pp.113.234310

16. Gimenez-Ibanez, S., Boter, M., Ortigosa, A., García-Casado, G., Chini, A., Lewsey, M.G., Ecker, J.R., Ntoukakis, V., and Solano, R., JAZ2 controls stomata dynamics during bacterial invasion, New Phytol., 2017, vol. 213, no. 3, pp. 1378–1392. https://doi.org/10.1111/nph.14354

17. Pedranzani, H., Racagni, G., Alemano, S., Miersch, O., Ramirez, I., Pena-Cortes, H., Taleisnik, E., Machado-Domenech, E., and Abdala, G., Salt tolerant tomato plants show increased levels of jasmonic acid, Plant Growth Regul., 2003, vol. 41, no. 2, pp. 149–158.https://doi.org/10.1023/A:1027311319940

18. Dong H., Zhen Z., Peng J., Chang L., Gong Q., and Wang N.N., Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis, J. Exp. Bot., 2011, vol. 62, no. 14, pp. 4875–4887. https://doi.org/10.1093/jxb/err143

19. Ramegowda, V., Senthil-Kumar, M., Udayakumar, M., and Mysore, K.S., A high-throughput virus-induced gene silencing protocol identifies genes involved in multi-stress tolerance, BMC Plant Biol., 2013, vol. 13, p. 193. https://doi.org/10.1186/1471-2229-13-193

20. Yastreb, T.O., Kolupaev, Yu.E., Lugovaya, A.A., and Dmitriev, A.P., Content of osmolytes and flavonoids under salt stress in Arabidopsis thaliana plants defective in jasmonate signaling, Appl. Biochem. Microbiol., 2016, vol. 52, no. 2, pp. 210–215.https://doi.org/10.1134/S0003683816020186

21. Yastreb, T.O., Kolupaev, Yu.E., Shvidenko, N.V., and Dmitriev, A.P., Action of methyl jasmonate and salt stress on antioxidant system of Arabidopsis plants defective in jasmonate signaling genes, Ukr. Biochem. J., 2018, vol. 90, no. 5, pp. 50–59.https://doi.org/10.15407/ubj90.05.050

22. Lorenzo, O., Chico, J.M., Sanchez-Serrano, J.J., and Solano, R., JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis,Plant Cell, 2004, vol. 16, no. 7, pp. 1938–1950. https://doi.org/10.1105/tpc.022319

23. Anderson, J.P., Badruzsaufari, E., Schenk, P.M., Manners, J.M., Desmond, O.J., Ehlert, C., Maclean, D.J., Ebert, P.R., and Kazan K., Antagonistic inter-action between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis,Plant Cell, 2004, vol. 16, no. 12, pp. 3460–3479. https://doi.org/10.1105/tpc.104.025833

24. Honda, K., Yamada, N., Yoshida, R., Ihara, H., Sawa, T., Akaike, T., and Iwai, S., 8-Mercapto-cyclic GMP mediates hydrogen sulfide-induced stomatal closure in Arabidopsis,Plant Cell Physiol., 2015, vol. 56, no. 8, pp. 1481–1489. https://doi.org/10.1093/pcp/pcv069

25. Iakovenko, O.M., Kretynin, S.V., Kabachevskaya, E.M., Lyakhnovich, G.V., Volotovski, D.I., and Kravets, V.S., Role of phospholipase C in ABA regulation of stomata function, Ukr. Bot. J., 2008, vol. 65, no. 4, pp. 605–613.

26. Yastreb, O.I., Kolupaev, Yu.A., Kokorev, A.I., Horielova, A.I., and Dmitriev, A.P., Methyl jasmonate and nitric oxide in regulation of the stomatal apparatus of Arabidopsis thaliana,Cytol. Genet., 2018, vol. 52, no. 6, pp. 400–405. https://doi.org/10.3103/S0095452718060129

27. Yastreb, T.O., Kolupaev, Yu.E., Lugovaya, A.A., and Dmitriev, A.P., Formation of adaptive reactions in Arabidopsis thaliana wild-type and mutant jin1 plants under action of abscisic acid and salt stress, Cytol. Genet., 2017, vol. 51, no. 5, pp. 325–330. https://doi.org/10.3103/S0095452717050115

28. Ton, J., Flors, V., and Mauch-Mani, B., The multifaceted role of ABA in disease resistance, Trends Plant Sci., 2009, vol. 14, no. 6, pp. 310–317.https://doi.org/10.1016/j.tplants.2009.03.006

29. de Ollas, C. and Dodd I.C., Physiological impacts of ABA–JA interactions under water-limitation, Plant Mol. Biol., 2016, vol. 91, pp. 641–650. https://doi.org/10.1007/s11103-016-0503-6

30. Ismail, A., Riemann, M., and Nick, P., The jasmonate pathway mediates salt tolerance in grapevines, J. Exp. Bot., 2012, vol. 63, no. 5, pp. 2127–2139. https://doi.org/10.1093/jxb/err426

31. Dombrecht, B., Xue, G.P., Sprague, S.J., Kirkegaard, J.A., Ross, J.J., Reid, J.B., Fitt, G.P., Sewelam, N., Schenk, P.M., Manners, J.M., and Kazan, K., MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis, Plant Cell, 2007, vol. 19, no. 7, pp. 2225–2245.https://doi.org/10.1105/tpc.106.048017

32. Kazan, K., Diverse roles of jasmonates and ethylene in abiotic stress tolerance, Trends Plant Sci., 2015, vol. 20, no. 4, pp. 219–229. https://doi.org/10.1016/j.tplants.2015.02.001