TSitologiya i Genetika 2020, vol. 54, no. 2, 35-44
Cytology and Genetics 2020, vol. 54, no. 2, 116–123, doi: https://www.doi.org/10.3103/S0095452720020085

Сomparative genetic characteristics of the russian and belarusian populations of wisent (Bison bonasus), north american bison (Bison bison) and cattle (Bos taurus)

Kostyunina O.V., Mikhailova M.E., Dotsev A.V., Zemlyanko I.I., Volkova V.V., Fornara M.S., Akopyan N.A., Kramarenko A.S., Okhlopkov I.M., Aksenova P.V., Tsibizova E.L., Mnatsekanov R.A., Zinovieva N.A.

  1. Federal Science Center for Animal Husbandry named after Academy Member L.K. Ernst, 142132, Dubrovitsy, Russian Federation
  2. The Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, 220072, Minsk, Belarus
  3. Prioksko-Terrasny State Reserve, 142200, Danki, Russian Federation
  4. Mykolayiv National Agrarian University, 54020, Mykolayiv, Ukraine
  5. Institute for Biological Problems of Cryolithozone Siberian Branch of RAS, 677980, Yakutsk, Russian Federation
  6. Don State Technical University (DSTU), 344000, Rostov-on-Don, Russian Federation
  7. Federal State Institution «Oksky State Natural Biosphere Reserve», 391072, Brykin Bor, Russian Federation
  8. World Wide Fund for Nature (WWF Russia) 109240, Moscow, Russian Federation

SUMMARY. A comparative study of the allele pool and the genetic structure of two Russian and one Belarusian populations of the wisent Bison bonasus against the representatives of the species of Bison bison and the genus Bos taurus was carried out. Russian populations were represented by samples of the Oka State Natural Biosphere Reserve (n = 42) and the Prioksko-Terrasny Nature Biosphere Reserve (n = 69), the Belarusian population was represented by samples of the Reserve «Belovezhskaya Pushcha» (n = 42), bison samples (n = 8) and cattle (n = 55) were used as an outgroup. The analysis of the mtDNA D-loop 630 bp fragment polymorphism for the presence of bison and cattle haplotypes, was performed. It was shown that there was a single haplotype for all wisent (Bison bonasus) which was different from the sequences of bison (Bison bison) and cattle. The analysis of population genetic parameters, calculated using 11 microsatellite markers, showed reduced diversity in wisent (Bison bonasus) groups compared to bison (Bison bison) and cattle. The largest number of monomorphic loci as well as the absence of private alleles were found in the group of Belarusian wisent. The analysis of the DJost pairwise genetic distances allowed us to establish clear genetic differentiation of the wisent from the outgroups. This fact was also confirmed by PCA analysis, carried out in the context of population identity and the analysis of population structure which demonstrated some proximity of bison (Bison bison) to wisent (Bison bonasus), which is due to their belonging to the same genus. The data obtained from this study showed differentiation between wisent (Bison bonasus) from bison (Bison bison) and cattle. It can be used in assessing the population genetic parameters of wisent, identifying and eliminating hybrid individuals. It also can be used in developing strategies and measures for the preservation and improvement of the wisent genetic resources.

Keywords: wisent (European bison), Bison bonasus, bison (North American bison; Bison bison), Bos taurus, mtDNA, microsatellites; allele pool

TSitologiya i Genetika
2020, vol. 54, no. 2, 35-44

Current Issue
Cytology and Genetics
2020, vol. 54, no. 2, 116–123,
doi: 10.3103/S0095452720020085

Full text and supplemented materials

References

1. Flint, V.E., Belousova, I.P., Pererva, V.I., Kazmin, E.G., Kiseleva, V.D., Kudryavtsev, I.V., Pirozhkov, N.V., and Sipko, T.G., Bison Conservation Strategy in Russia, World Wide Fund for Nature (WWF), Moscow, Russia, 2002. https://wwf.ru/upload/iblock/1d0/zubr.pdf .

2. European Bison Pedigree Book, Raczynski, J., Ed., Białowieża, 2017.

3. Slatis, M.A., An analysis of inbreeding in the European bison, Genetics, 1960, vol. 45, pp. 275–287. www.ncbi.nlm. nih.gov/pmc/articles/PMC1210050/pdf/275.pdf.

4. Pucek, Z., Bielousova, I.P., Krasinska, M., Krasinski, Z.A., and Olech, W., European Bison. Status Survey and Conservation Action Plan, IUCN/SSC Bison Specialist Group, IUCN, Gland, Switzerland and Cambridge, UK, 2004, p. 54. https://portals.iucn.org/library/ efiles/documents/1contants.pdf .

5. Kozlo, P. and Nikiforov, M., Road map for the Białowieża bison, Sci. Innovation., 2013, vol. 4, no. 122, pp. 12–16.

6. Krasinska, M. and Krasinski, Z.A., European Bison: The Nature Monograph, 2013. https://doi.org/10.1007/978-3-642-36555-3

7. Tokarska, M., Bunevich, A.N., Demontis, D., Sipko, T., Perzanowski, K., Baryshnikov, G., Kowalczyk, R., Voitukhovskaya, Y., Wojcik, J.M., Marczuk, B., Ruczynska, I., and Pertoldi, C., Genes of the extinct Caucasian bison still roam the Białowieża Forest and are the source of genetic discrepancies between Polish and Belarusian populations of the European bison, Bison bonasus,Biol. J. Linn. Soc., 2015, vol. 114, no. 4, pp. 752–763. https://doi.org/10.1111/bij.12470

8. Olech, W., Influence of individual inbred and mother’s inbred on calves survival in European bison (Bison bonasus), Rozpr. Nauk. Mon. Wyd SGGW, Warszawa, 2003.

9. Tokarska, M., Pertoldi, C., Kowalczyk, R., and Perzanowski, K., Genetic status of the European bison Bison bonasus after extinction in the wild and subsequent recovery, Mamm. Rev., 2011, vol. 41, no. 2, pp. 151–162. https://doi.org/10.1111/j.1365-2907.2010.00178.x

10. Gasparski, J.M., Investigations on the blood groups of Wisents (Bison bonasus) and hybrids in comparison with the blood groups of cattle, in Blood Groups of Animals, Matousek, J., Ed., Dordrecht: Springer, 1965, pp. 93–97. https://doi.org/10.1007/978-94-017-4453-9_12

11. Sipko, T.P., Rautian, G.S., Udina, I.G., and Takitskaia, T.A., Polymorphism of biochemical markers in European bison (Bison bonasus), Genetika, 1996, vol. 32, no. 3, pp. 400–405.

12. Babik, W., Kawalko, A., Wojcik, J.M., and Radwan, J., Low major histocompatibility complex class I(MHC I) variation in the European bison (Bison bonasus), J. Hered., 2012, vol. 103, no. 3, pp. 349–359. https://doi.org/10.1093/jhered/ess005

13. Udina, I.G. and Shaikhaev, G.O., Restriction fragment length polymorphism (RFLP) of exon 2 of the MhcBibo-DRB3 gene in European bison Bison bonasus,Acta Theriol., 1998, vol. 5, pp. 75–82.

14. Radwan, J., Kawalko, A., Wojcik, J.M., and Babik, W., MHC-DRB3 variation in a free-living population of the European bison, Bison bonasus,Mol. Ecol., 2007, vol. 16, no. 3, pp. 531–540. https://doi.org/10.1111/j.1365-294X.2006.03179.x

15. Burzynska, B. and Topczewski, J., Genotyping of Bison bonasus kappa-casein gene following DNA sequence amplification, Anim. Genet., 1995, vol. 26, no. 5, pp. 335–336. https://doi.org/10.1111/j.1365-2052.1995.tb02669.x

16. Udina, I.G., Badagueva, I.N., Sulimova, G.E., and Zakharov-Gezekhus, I.A., Distribution of the kappa casein gene alleles in the bison (Bison bonasus) population, Genetika, 1996, vol. 31, no. 12, pp. 1704–1706.

17. Burzyńska, B., Olech, W., and Topczewski, J., Phylogeny and genetic variation of the European bison Bison bonasus based on mitochondrial DNA D-loop sequences, Acta Theriol., 1999, vol. 44, no. 3, pp. 253–262. https://pdfs.semanticscholar.org/698d/ 92ff8f4c43d0985b87218cf4f265fc9dd940.pdf.

18. Ward, T.J., Bielawski, J.P., Davis, S.K., Templeton, J.W., and Derr, J.N., Identification of domestic cattle hybrids in wild cattle and bison species: a general approach using mtDNA markers and the parametric bootstrap, Anim. Conserv., 1999, vol. 2, pp. 51–57. https://doi.org/10.1111/j.1469-1795.1999.tb00048.x

19. Wójcik, J.M., Kawalko, A., Tokarska, M., Jaarola, M., Vallenback, P., and Pertoldi, C., Post-bottleneck mtDNA diversity in a free-living population of European bison Bison bonasus. Implications for conservation, J. Zool., 2008, vol. 277, pp. 81–87.https://doi.org/10.1111/j.1469-7998.2008.00515.x

20. Yudin, N.S., Kulikov, I.V., Gunbin, K.V., Aitnazarov, R.B., Kushnir, A.V., Sipko, T.P., and Moshkin, M.P., Detection of mitochondrial DNA from domestic cattle in European bison (Bison bonasus) from the Altai Republic in Russia, Anim. Genet., 2012, vol. 43, no. 3, p. 362. https://doi.org/10.1111/j.1365-2052.2011.02261.x

21. Tiedemann, R., Nadlinger, K., and Pucek, Z., Mitochondrial DNA-RFLP analysis reveals low levels of genetic variation in European bison Bison bonasus,Acta Theriol., 1998, vol. 5, pp. 83–87. http://rcin.org.pl/ Content/12827/BI002_2613_Cz-40-2_Acta-T42-Supp5-83-87_o.pdf.

22. Wilson, G.A. and Strobeck, C., The isolation and characterization of microsatellite loci in bison, and their usefulness in other artiodactyls, Anim. Genet., 1999, vol. 30, pp. 225–244. https://doi.org/10.1046/j.1365-2052.1999.00404-1.x

23. Tokarska, M., Kawalko, A., Wojcik, J.M., and Pertoldi, C., Genetic variability in the European bison (Bison bonasus) population from Białowieża forest over 50 years, Biol. J. Linn. Soc., 2009, vol. 97, no. 4, pp. 801–809. https://doi.org/10.1111/j.1095-8312.2009.01203.x

24. Luenser, K., Fickel, J., Lehnen, A., and Speck, S., Low level of genetic variability in European bison (Bison bonasus) from the Białowieża National Parkin Poland, Eur. J. Wild Life Res., 2005, vol. 51, pp. 84–87. https://doi.org/10.1007/s10344-005-0081-4

25. Gralak, B., Krasinska, M., Niemczewski, C., Krasinski, Z.A., and Zurkowski, M., Polymorphism of bovine microsatellite DNA sequences in the lowland European bison, Acta Theriol., 2004, vol. 49, pp. 449–456. https://doi.org/10.1007/BF03192589

26. Dotsev, A.V., Volkova, V.V., Kharzinova, V.R., Kostyunina, O.V., Zinovieva, N.A., Aksenova, P.V., and Mnatsekanov, R.A., Study of allele pool and genetic structure of Russian population of lowland-Caucasian line of European bison (Bison bonasus), Russ. J. Genet.: Appl. Res., 2018, vol. 8, no. 1, pp. 31–36. https://doi.org/10.1134/S2079059718010057

27. Węcek, K., Hartmann, S., Paijmans, J.L.A., Taron, U., Xenikoudakis, G., Cahill, J.A., Heintzman, P.D., Shapiro, B., Baryshnikov, G., Bunevich, A.N., Crees, J.J., Dobosz, R., Manaserian, N., Okarma, H., Tokarska, M., Turvey, S.T., Wójcik, J.M., Żyła, W., Szymura, J.M., Hofreiter, M., and Barlow, A., Complex admixture preceded and followed the extinction of wisent in the wild, Mol. Biol. Evol., 2017, vol. 34, no. 3, pp. 598–612. https://doi.org/10.1093/molbev/msw254

28. Wang, K., Wang, L., Lenstra, J.A., Jian, J., Yang, Y., Hu, Q., Lai, D., Qiu, Q., Ma, T., Du, Z., Abbott, R., and Liu, J., The genome sequence of the wisent (Bison bonasus), Gigascience, 2017, vol. 6, no. 4, pp. 1–5. https://doi.org/10.1093/gigascience/gix016

29. Camilla, M.U., Investigating genetic variability within specific indigenous Indonesian cattle breeds, Other Thesis, SLU, 2008. https://stud.epsilon.slu.se/11092/ 1/mannich_c_170929.pdf

30. Okonechnikov, K., Golosova, O., and Fursov, M., Unipro UGENE: a unified bioinformatics toolkit, Bioinformatics, 2012, vol. 28, pp. 1166–1167. https://doi.org/10.1093/bioinformatics/bts091

31. Leigh, J.W. and Bryant, D., PopART: Full-feature software for haplotype network construction, Methods Ecol. Evol., 2015, vol. 6, no. 9, pp. 1110–1116. https://doi.org/10.1111/2041-210X.12410

32. Peakall, R. and Smouse, P.E., GenAIEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update, Bioinformatics, 2012, vol. 28, pp. 2537–2539. https://doi.org/10.1111/j.1471-8286.2005.01155.x

33. Keenan, K., McGinnity, P., Cross, T.F., Crozier, W.W., and Prodohl, P.A., diveRsity: An R packagefor the estimation and exploration of population genetics parameters and their associated errors, Methods Ecol. Evol., 2013, vol. 4, pp. 782–788. https://doi.org/10.1111/2041-210X.12067

34. Weir, B.S. and Cockerham, C.C., Estimating F-statistics for the analysis of population structure, Evolution, 1984, vol. 38, pp. 1358–1370. https://doi.org/10.1111/j.1558-5646.1984.tb05657.x

35. Jost, L., GST and its relatives do not measure differentiation, Mol. Ecol., 2008, vol. 17, pp. 4015–4026. https://doi.org/10.1111/j.1365-294X.2008.03887.x

36. Huson, D.H. and Bryant, D., Application of phylogenetic networks in evolutionary studies, Mol. Biol. Evol., 2006, vol. 23, pp. 254–267. https://doi.org/10.1093/molbev/msj030

37. Jombart, T., adegenet: a R package for the multivariate analysis of genetic markers, Bioinformatics, 2008, vol. 24, pp. 1403–1405. https://doi.org/10.1093/bioinformatics/btn129

38. Wickham, H., ggplot2: Elegant Graphics for Data Analysis, New York, NY: Springer-Verlag, 2009. https://doi.org/10.1007/978-0-387-98141-3

39. Pritchard, J.K., Stephens, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, no. 2, pp. 945–959. www.genetics.org/content/155/2/945

40. Francis, R.M., pophelper: an R package and web app to analyse and visualize population structure, Mol. Ecol. Res., 2017, vol. 17, pp. 27–32. https://doi.org/10.1111/1755-0998.12509

41. Halbert, N.D., Ward, T.J., Schnabel, R.D., Taylor, J.F., and Derr, J.N., Conservation genomics: disequilibrium mapping of domestic cattle chromosomal segments in North American bison populations, Mol. Ecol., 2005, vol. 14, pp. 2343–2362. https://doi.org/10.1111/j.1365-294x.2005.02591.x

42. Cronin, M.A., MacNeil M.D., Vu N., Leesburg V., Blackburn H.D., and Derr J.N., Genetic variation and differentiation of bison (Bison bison) subspecies and cattle (Bos taurus) breeds and subspecies, J. Hered., 2013, vol. 104, no. 4, pp. 500–509. https://doi.org/10.1093/jhered/est030

43. Glazko, V.I., Zhelonkina, G.M., Sipko, T.P., Kushnir, A.V., and Glazko, T.T., Genetic relationships of bovine species using the example of Bos taurus, Bison bonasus and Bison bison, Izv.Timiryazevskoi S.-Kh. Akad., 2009, vol. 3, pp. 174–180. https://elibrary.ru/download/elibrary_12886565_70233590.pdf.