TSitologiya i Genetika 2020, vol. 54, no. 2, 19-28
Cytology and Genetics 2020, vol. 54, no. 2, 103–110, doi: https://www.doi.org/10.3103/S0095452720020115

Formation of cell and tissue barriers ovules Phaseolus vulgaris L. in a system of antiviral resistance

Likhanov A.F., Antipov I.A., Hrynchuk K.V., Dragovoz I.V.

  1. Institute for evolutionary ecology NAS Ukraine
  2. The National University of Life and Environmental Sciences of Ukraine
  3. D.K. Zabolotny Institute of Microbiology and Virology of the NAS Ukraine

SUMMARY. The formation of bean seeds in plants systemically infected with common bean mosaic virus is accompanied by the intense deposition of callose and lignin in nucellar, integumental, mikopillyar areas as well as in tissue barriers thus preventing the spread of viruses. The tissue degradation of ovules with the development of the typical hypersensitivity reaction occurs in case of high virus particles concentration in plants. The diffuse granular viral inclusions were detected іn the cytoplasm and nucleus of developing embryo cells. Ways of virus transport were determined by structural features of the vascular system or the ovule tissues and localization of viral inclusions in the tissues during seed formation.

Keywords: common bean, ovule, integument, nucellus, embryo, cuticle, Bean common mosaic virus, viral inclusions

TSitologiya i Genetika
2020, vol. 54, no. 2, 19-28

Current Issue
Cytology and Genetics
2020, vol. 54, no. 2, 103–110,
doi: 10.3103/S0095452720020115

Full text and supplemented materials

References

1. Hull, R., Matthews’ Plant Virology, San Diego: Academic, 2001, 4th ed.

2. Moskovets, S.M., Kraiev, V.H., Porembska, N.B., Bilyk, L.H., and Baratova, D.F., Viruses and Viral Diseases in Legume Cultures in Ukraine, Kyiv: Naukova Dumka, 1971.

3. Mishchenko, L.T., Dunich, A.A., and Shcherbatenko, I.S., Phylogenetic analysis of Ukrainian seed-transmitted isolate of Soybean mosaic virus, Biopol. Cell, 2018, vol. 34, no. 3, pp. 229–238. https://doi.org/10.7124/bc.00097D

4. Shevchenko, Zh.P., Viral and Mycoplasmal Diseases of Field Cultures, Kyiv: Urozhai, 1995.

5. Kiraly, L., Barna, B., and Kiraly, Z., Plant resistance to pathogen infection: forms and mechanisms of innate and acquired resistance, Phytopathology, 2007, vol. 155, pp. 385–396. https://doi.org/10.1111/j.1439-0434.2007.01264.x

6. Mertel, K., Bor’ba s vyrusnymi boleznyami rastenii (Combating Viral Diseases of Plants), Moscow: Agropromizdat, 1986.

7. Kyrychenko, A.M. and Kovalenko, O.H., Bean common mosaic in the Kyiv region: etiology of the disease and identification of the pathogen, Mikrobiol. Zh., 2018, vol. 80, no. 4, pp. 96–107. https://doi.org/10.15407/microbiolj80.04.096

8. Mysil, M., Kvicala, B.A., and Leskova, O., Diagnosis of Viruses of Legumes and Crops, Bratislava: VEDA vydavatelstvo Slovenskej akademie vied, 1981.

9. Agrios, G., Plant Pathology, Elsevier, Academic Press, 2005, pp. 723–824.

10. Atabekov, J.G. and Dorokhov, Y.L., Plant virus-specific transport function and resistance of plants to viruses, Adv. Virus Res., 1984, vol. 29, pp. 313–364. https://doi.org/10.1016/s0065-3527(08)60412-1

11. Dodds, J.A. and Hamilton, R.I., Structural interactions between viruses as a consequence of mixed infections, Adv. Virus Res., 1976, vol. 20, pp. 33–86. https://doi.org/10.1016/S0065-3527(08)60501-1

12. Boiko, A.L., Silaeva, A.M., Mishchenko, L.T., and Reshetnik, G.V., Peculiarities of ultrastructural organization of the winter wheat mesophyll cells under conditions of virus infection, Cytol. Genet., 1997, vol. 31, no. 5, pp. 71–78.

13. Martin, K., Singh, J., Hill, J.H., Whitham, S.A., and Cannon, S.B., Dynamic transcriptome profiling of Bean Common Mosaic Virus (BCMV) infection in Common Bean (Phaseolus vulgaris L.), BMC Genom., 2016, vol. 17, no. 613, pp. 1–19. https://doi.org/10.1186/s12864-016-2976-8

14. Boom, R., Sol, C.J., Salimans, M.M., Jansen, C.L., Wertheim-van Dillen, P.M., and van der Noordaa, J., Rapid and simple method for purification of nucleic acids, J. Clin. Microbiol., 1990, vol. 28, pp. 495–503. PMCID: PMC269651.

15. Antipov, I.O., Hrynchuk, K.V., and Duplyak, O.T., Development of PCR systems for identification of the bean common mosaic virus, Visn. Nats. Univ. Biores. Prirodokorist. Ukrayiny, 2016, vol. 234, pp. 40–6.

16. Pausheva, Z.P., Praktykum po tsytolohyy rastenyi (A Practical Course in Plant Cytology), Moscow: Agropromizdat, 1988.

17. Furst, H.H., Metodi anatomo-hystokhymycheskoho yssledovanyia rastytelnikh tkanei (Method of Anatomical and Histochemical Study of Plant Tissues), Moscow: Nauka, 1979, pp. 40–65.

18. Holdyn, M.Y., Vyrusnie vkliuchenye v rastytelnoi kletke y pryroda vyrusov (Viral Inclusions in Plant Cell and the Nature of Viruses), Moscow: Akad. Nauk SSSR, 1963.

19. Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A., Virus Taxonomy, San Diego, USA: Academic, 2005.

20. Takhtadzhiana, A.L., Sravnytelnaia anatomyia semian (Comparative Anatomy of Seeds), St. Petersburg: Nauka, 1992, pp. 374–376.

21. Shamrov, Y.Y., Semiazachatok tsvetkovikh rastenyi: stroenye, funktsyy, proyskhozhdenye (Ovule of Flowering Plants: Structure, Functions, and Origin), Moscow: KMK, 2008.

22. Revers, F., Gall, O., Candresse, T., and Maule, A.J., New advances in understanding the molecular biology of plant/potyvirus interactions, Mol. Plant–Microbe Interact., 1999, vol. 12, no. 5, pp. 367–376. https://doi.org/10.1094/mpmi.1999.12.5.367

23. Flores-Estevez, N., Acosta-Gallegos, J.A., and Silva-Rosales, L., Bean common mosaic virus and Bean common mosaic necrosis virus in Mexico, Plant Dis., 2003, vol. 87, no. 1, pp. 21–25. https://doi.org/10.1094/pdis.2003.87.1.21

24. Lee, J.Y. and Lucas, W.J., Phosphorylation of viral movement proteins: regulation of cell-to-cell trafficking, Trends Microbiol., 2001, vol. 9, pp. 5–8. https://doi.org/10.1016/s0966-842x(00)01901-6

25. Jossey, S., Hobbs, H.A., and Domier, L.L., Role of soybean mosaic virus-encoded proteins in seed and aphid transmission in soybean, Phytopathology, 2013, vol. 103, pp. 941–948. https://doi.org/10.1094/phyto-09-12-0248-r

26. Folsom, M.W. and Cass, D.D., Changes in transfer cell distribution in the ovule of soybean after fertilization, Can. J. Bot., vol. 64, no. 5, pp. 965–972. https://doi.org/10.1139/b86-130

27. Roberts, I.M., Wang, D., Thomas, C.L., and Maule, A.J., Pea seed-borne mosaic virus seed transmission exploits novel symplastic pathways to infect the pea embryo and is, in part, dependent upon chance, Protoplasma, 2003, vol. 222, pp. 31–43. https://doi.org/10.1007/s00709-003-0015-5

28. Card, S.D., Pearson, M.N., and Clover, G.R.G., Plant pathogens transmitted by pollen, Australas. Plant Pathol., 2007, vol. 36, no. 5, pp. 455–461. https://doi.org/10.1071/ap07050

29. Bennett, C.W., Seed transmission of plant viruses, Adv. Virus Res., 1969, vol. 14, pp. 221–261. https://doi.org/10.1016/s0065-3527(08)60561-8

30. Froissart, R., Roze, D., Uzest, M., Galibert, L., Blanc, S., and Michalakis, Y., Recombination every day: abundant recombination in a virus during a single multi-cellular host infection, PLoS Biol., 2005, vol. 3, no. 3, pp. 389–395. https://doi.org/10.1371/journal.pbio.0030089

31. Kovalchuk, I., Kovalchuk, O., Kalck, V., Boyko, V., Filkowski, J., Heinlein, M., and Hohn, B., Pathogen-induced systemic plant signal triggers DNA rearrangements, Nature, 2003, vol. 423, no. 6941, pp. 760–762. https://doi.org/10.1038/nature01683