TSitologiya i Genetika 2019, vol. 53, no. 2, 76-77
Cytology and Genetics 2019, vol. 53, no. 2, 169–177, doi: https://www.doi.org/10.3103/S009545271902004X

Molecular characterization and tissue expression of common tobacco (Nicotiana tabacum) cadmium resistance protein 2 and metal tolerance protein 4 genes

Kong C.S., Chen J.H., Liu J.H., Yu L.

  1. Institute of Agricultural Environment&Resources, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
  2. Technology Center of Yunnan Tobacco Industry Co., Ltd., Kunming650231, China
  3. Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming 650214, China

The complete coding sequences of common tobacco cadmium resistance protein 2 and metal tolerance protein 4 genes were amplified by RT­PCR. The tobacco cadmium resistance protein 2 gene encodes a protein of 192 amino acids which shares high identity with the cadmium resistance protein 2 of four species —nicotiana tomentosiformis (99 %), wood tobacco (97 %), capsicum annuum (90 %) and potato (86 %). The tobacco metal tolerance protein 4gene encodes a protein of 415 amino acids which shares high identity with themetal tolerance protein 4 of six species – nicotiana tomentosiformis (90 %), wood tobacco (90 %), lycopersicon esculentum (84 %), potato (84 %), lycopersicon pennellii (83 %) and capsicum annuum (82 %). Prediction of transmembrane helices showed that cadmium resistance protein 2 and metal tolerance protein 4 might be two transmembrane proteins. Phylogenetic analysis revealed that the common tobacco cadmium resistance protein 2 and metal tolerance protein 4 genes both have a closer genetic relationship with the wood tobacco cadmium resistance protein 2 and metal tolerance protein 4 genes. Computer­assisted analysis showed that cadmium resistance protein 2 gene is structured in 4 exons and 3 introns and metal tolerance protein 4 gene consists of 7 exons and 6 introns. The gene expression profile analysis indicated that the common tobacco cadmium resistance protein 2 and metal tolerance protein 4 genes were highly expressed in root.

Keywords: Tobacco, molecular cloning, cadmium resistance protein 2, metal tolerance protein 4, tissue expression

TSitologiya i Genetika
2019, vol. 53, no. 2, 76-77

Current Issue
Cytology and Genetics
2019, vol. 53, no. 2, 169–177,
doi: 10.3103/S009545271902004X

Full text and supplemented materials

References

1. Arrivault, S., Senger, T., and Krämer, U., The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply, Plant J., 2006, vol. 46, no. 5, pp. 861–879.

2. Kawagashira, N., Ohtomo, Y., Murakami, K., Matsubara, K., Kawai, J., Carninci, P., Hayashizaki, P., Kikuchi, S., and Higo, K., Multiple zinc finger motifs with comparison of plant and insect, Genome Informatics 2001, Matsuda, H., Miyano, S., Takagi, T., and Wong, L., Eds., Tokyo, Japan: Universal Academy Press, 2001, vol. 12, pp. 368–369.

3. Woolhouse, H.W., Toxicity and tolerance in the responses of plants to metals, in Encyclopedia of Plant Physiology: Responses to the Chemical and Biological Environment, Lange, O.L., Nobel, P.S., Osmond, C.B., and Ziegler, H., Eds., Berlin: Springer Verlag, 1983, vol. 12C, pp. 245–300.

4. Rady, M.M. and Hemida, K.A., Modulation of cadmium toxicity and enhancing cadmium-tolerance in wheat seedlings by exogenous application of polyamines. Ecotoxicol. Environ. Saf., 2015, vol. 119, pp. 178–185.

5. Liu, K., Gu, P., Chen, W., Shi, J., Shi, C., and Xia, L., Effect of pregnancy on the levels of blood cadmium and lead: analysis of 2006–2011 Nanjing Maternity and Child Health Care Hospital survey data, Iran J. Public Health, 2013, vol. 42, no. 7, pp. 691–699.

6. Matés, J.M., Segura, J.A., Alonso, F.J., and Márquez, J., Role of dioxins and heavy metals in cancer and neurological diseases by ROS-mediated mechanisms, Free Radic. Biol. Med., 2010, vol. 49, no. 9, pp. 1328–1341.

7. Counter, S.A., Buchanan, L.H., and Ortega, F., Neurocognitive screening of lead exposed Andean adolescents and young adults, J. Toxicol. Environ. Health A, 2009, vol. 72, no. 10, pp. 625–662.

8. Thomine, S., Wang, R., Ward, J.M., Crawford, N.M., and Schroeder, J.I., Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes, Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, no. 9, pp. 4991–4996.

9. Song, W.Y., Choi, K.S., Kim, D.Y., Geisler, M., Park, J., Vincenzetti, V., Schellenberg, M., Kim, S.H., Lim, Y.P., Noh, E.W., Lee, Y., and Martinoia, E., Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport, Plant Cell, 2010, vol. 22, no. 7, pp. 2237–2252.

10. Ishikawa, S., Ishimaru, Y., Igura, M., Kuramata, M., Abe, T., Senoura, T., Hase, Y., Arao, T., Nishizawa, N.K., and Nakanishi, H., Ion-beam irradiation, gene identification, and marker assisted breeding in the development of low-cadmium rice. Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, no. 47, pp. 19166–19171.

11. Jaillon, O., Aury, J.M., Noel, B., Policri, A., Clepet, C., Casagrande, A., Choisne, N., Aubourg, S., Vitulo, N., Jubin, C., Vezzi, A., Legeai, F., Hugueney, P., Dasilva, C., Horner, D., Mica, E., Jublot, D., Poulain, J., Bruyère, C., Billault, A., Segurens, B., Gouyvenoux, M., Ugarte, E., Cattonaro, F., Anthouard, V., Vico, V., Del Fabbro, C., Alaux, M., Di Gaspero, G., Dumas, V., Felice, N., Paillard, S., Juman, I., Moroldo, M., Scalabrin, S., Canaguier, A., Le Clainche, I., Malacrida, G., Durand, E., Pesole, G., Laucou, V., Chatelet, P., Merdinoglu, D., Delledonne, M., Pezzotti, M., Lecharny, A., Scarpelli, C., Artiguenave, F., Pè, M.E., Valle, G., Morgante, M., Caboche, M., Adam-Blondon, A.F., Weissenbach, J., Quétier, F., Wincker, P., and French–Italian Public Consortium for Grapevine Genome Characterization, The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla, Nature, 2007, vol. 449, no. 7161, pp. 463–467.

12. Jones, A.M., Xuan, Y., Xu, M., Wang, R.S., Ho, C.H., Lalonde, S., You, C.H., Sardi, M.I., Parsa, S.A., Smith-Valle, E., Su, T., Frazer, K.A., Pilot, G., Pratelli, R., Grossmann, G., Acharya, B.R., Hu, H.C., Engineer, C., Villiers, F., Ju, C., Takeda, K., Su, Z., Dong, Q., Assmann, S.M., Chen, J., Kwak, J.M., Schroeder, J.I., Albert, R., Rhee, S.Y., and Frommer, W.B., Border control—a membrane-linked interactome of Arabidopsis, Science, 2014, vol. 344, no. 6185, pp. 711–716.

13. Liu, G.Y., Isolation, sequence identification and tissue expression profile of two novel soybean (glycine max) genes—vestitone reductase and chalcone reductase, Mol. Biol. Rep., 2009, vol. 36, no. 7, pp. 1991–1994.

14. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)), Method. Methods, 2001, vol. 25, no. 4, pp. 402–408.

15. Nian, F., Zhang, Y., Su, X., Zou, J., and Zhao, L., Isolation, sequence identification and tissue expression of a novel tobacco (Nicotiana tabacum) gene—TBG1, Int. J. Agric. Sci. Technol., 2013, vol. 1, pp. 57–61.

16. Hardison, R.C., Comparative genomics, PLoS Biol., 2003, vol. 1, p. E58.

17. Kunito, T., Kusano, T., Oyaizu, H., Senoo, K., Kanazawa, S., and Matsumoto, S., Cloning and sequence analysis of czc genes in Alcaligenes sp. strain CT14, Biosci. Biotechnol. Biochem., 1996, vol. 60, no. 4, pp. 699–704.

18. Xiong, A. and Jayaswal, R.K., Molecular characterization of a chromosomal determinant conferring resistance to zinc and cobalt ions in Staphylococcus aureus, J. Bacteriol., 1998, vol. 180, no. 16, pp. 4024–4029.

19. Lu, M. and Fu, D., Structure of the zinc transporter YiiP, Science, 2007, vol. 317, no. 5845, pp. 1746–1748.