ISSN 0564-3783  
Main page
Contacts
Preview papers  
Contents  
Themes
Subscription
Information to authors
Editorial board
Standard version



In Ukrainian

Export citations   UNIMARC   BibTeX   RIS


IRAP-analysis of transgenic wheat plants with double-stranded RNA suppressor of the proline dehydrogenase gene

Morgun B.V., Dubrovna O.V.

 




SUMMARY. The level of polymorphism of DNA regions flanked by inverted LTR retrotransposon repeats in genetically modified wheat plants containing the double-stranded RNA suppressor of the proline dehydrogenase gene obtained by the method of Agrobacterium-mediated transformation in an in vitro culture has been analyzed by IRAP analysis. When using all high-performance primers for the retrotransposons Sukkula, Sabrina, Wham, Nikita and Wilma1, no DNA polymorphism was found in transgenic plants. Under the conditions of the experiment, we did not register the disappearance of amplicons in the DNA profiles of PCR, which may indicate the absence of rearrangements in the binding sites with the primer and in the studied loci flanked by LTR retrotransposons. No new amplicons appeared in the spectra of DNA amplification products, which indicates the inactivation of the transposition phenomenon of mobile genetic elements in transgenic plants with a double-stranded RNA suppressor of the proline dehydrogenase gene. To expand the spectrum of amplicons in the PCR products of the studied samples, the method of combining IRAP primers with various retrotransposons in one reaction was tested. The pairs of IRAP primers were selected experimentally, however, using these pairs of primers, no disappearance or appearance of new polymorphic fragments was detected. The absence of DNA polymorphism in transgenic plants with a double-stranded RNA suppressor of the proline dehydrogenase gene may be associated with the phenomenon of RNA interference, which suppresses the activity of retrotransposons.

Key words: Triticum aestivum, Agrobacterium-mediated transformation, retrotransposon, IRAP PCR

Tsitologiya i Genetika 2019, vol. 53, no. 5, pp. 46-55

E-mail: molgen icbge.org.ua, dubrovny ukr.net

Morgun B.V., Dubrovna O.V. IRAP-analysis of transgenic wheat plants with double-stranded RNA suppressor of the proline dehydrogenase gene, Tsitol Genet., 2019, vol. 53, no. 5, pp. 46-55.

In "Cytology and Genetics":
B. V. Morgun, O. V. Dubrovna IRAP Analysis of Transgenic Wheat Plants with a Double-Stranded RNA Suppressor of the Proline Dehydrogenase Gene, Cytol Genet., 2019, vol. 53, no. 5, pp. 384391
DOI: 10.3103/S0095452719050116


References

1. Abdul, R., Ma, Z., and Wang, H., Genetic transformation of wheat (Triticum aestivum L.): a review, Triticeae Genom. Genet., 2010, no. 4, pp. 17. https://doi.org/10.5376/tgg.2010.01.0002

2. Hiei, Y., Ishida, Y., and Komari, T., Progress of cereal transformation technology mediated by Agrobacterium tumefaciens, Front. Plant Sci., 2014, no. 5, pp. 111. https://doi.org/10.3389/fpls.2014.00628

3. El-Mangoury, K., Abdrabou, R., Yasien, M., and Fahmy, A., Optimization of a transformation system for three Egyptian wheat cultivars using immature embryo-derived callus via microprojectile bombardment, Arab. J. Biotech., 2006, no. 1, pp. 175188.

4. Ding, L., Li, S., Gao, J., Wang, Y., Yang, G., and He, G., Optimization of Agrobacterium-mediated transformation conditions in mature embryos of elite wheat, Mol. Biol. Rep., 2009, no. 36, pp. 2936. https://doi.org/10.1007/s11033-007-9148-5

5. Jones, H., Doherty, A., and Wu, H., Review of methodologies and a protocol for the Agrobacterium mediated transformation of wheat, Plant Methods, 2005, no. 1, pp. 15. https://doi.org/10.1186/1746-4811-1-5

6. Choi, H.W., Lemaux, P.G., and Cho, M.-J., Increased chromosomal variation in transgenic versus nontransgenic barley (Hordeum vulgare L.) plants, Crop Sci., 2000, no. 40, pp. 524533.

7. Choi, H.W., Lemaux, P.G., and Cho, M.-J., High frequency of cytogenetic aberration in transgenic oat (Avena sativa L.) plants, Plant Sci., 2001, no. 160, pp. 763772. https://doi.org/10.1016/S0168-9452(01)00369-7

8. Labra, M., Savini, C., Bracale, M., Pelucchi, N., Colombo, L., Bardini, M., and Sala, F., Genomic changes in transgenic rice (Oryza sativa L.) plants produced by infecting calli with Agrobacterium tumefaciens, Plant Cell Rep., no. 20, pp. 325330.

9. Enikeev, A.G., Kopytina, T.V., Semenova, L.A., Natyaganova, A.V., Gamanetz, L.V., and Volkova, O.D., Agrobacterium transformation as complex biotical stressing factor, J. Stress Physiol. Biochem., 2008, vol. 4, no. 1, pp. 1119.

10. Filleur, S., Dorbe, M.F., and Cerezo, M., An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake, FEBS Lett., 2001, vol. 489, no. 23, pp. 220224.

11. Flugge, U.I. and Klosgen, R.B., Characterization of a T-DNA insertion mutant for the protein import receptor at Toc33 from chloroplasts, Mol. Genet. Genom., 2004, vol. 272, no. 4, pp. 379396.

12. Gaspar, Y., Nam, J., Schultz, C., Lee, L., Gilson, P., Gelvin, S., and Bacic, A., Characterization of the Arabidopsis lysine-rich arabinogalactan-protein AtAGP17 mutant (rat1) that results in a decreased efficiency of Agrobacterium transformation, Plant Physiol., 2004, vol. 135, no. 4, pp. 21622171. https://doi.org/10.1104/pp.104.045542

13. Leonard, J.M., Bollmann, S.R., and Hays, J.B., Reduction of stability of Arabidopsis genomic and transgenic DNA-repeat sequences (microsatellites) by inactivation of AtMSH2 mismatch-repair function, Plant Physiol., 2003, vol. 133, no. 1, pp. 328338. https://doi.org/10.1104/pp.103.023952

14. Muller, K., Heller, H., and Doerfier, W., Foreign DNA integration. Genome-wide perturbations of methylation and transcription in the recipient genomes, J. Biol. Chem., 2001, no, 276, pp. 1427114278. https://doi.org/10.1074/jbc.M009380200

15. Matzke, A.J.M. and Matzke, M.A., Position effects and epigenetic silencing of plant transgenes, Curr. Opin. Plant Biol., 1998, no. 1, pp. 142148. https://doi.org/10.1016/S1369-5266(98)80016-2

16. Matzke, M.A., Mette, M.F., and Matzke, A.J.M., Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates, Plant Mol. Biol., 2000, no. 43, pp. 401415.

17. Kidwell, M.G. and Lisch, D.R., Hybrid genetics. Transposons unbound, Nature, 1998, no. 393, pp. 2223. https://doi.org/10.1038/29889

18. Kidwell, M.G. and Lisch, D.R., Transposable elements and host genome evolution, Trends Ecol. Evol., 2000, no. 15, pp. 9599. https://doi.org/10.1016/S0169-5347(99)01817-0

19. Kumar, A. and Bennetzen, J., Plant retrotransposons, Annu. Rev. Genet., 1999, no. 33, pp. 479532. https://doi.org/10.1146/annurev.genet.33.1.479

20. Todorovska, E., Retrotransposons and their role in plant-genome evolution, Biotechnol. Biotechnol. Equip., 2007, no. 21, pp. 294305. https://doi.org/10.1080/13102818.2007.10817464

21. Kalendar, R., Grob, T., Regina, M., Suoniemi, A., and Schulman, A., IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques, Theor. Appl. Genet., 1999, vol. 98, no. 5, pp. 704711.

22. Kalendar, R. and Schulman, A., IRAP and REMAP for retrotransposon-based genotyping and fingerprinting, Nat. Protoc., 2006, vol. 1, no. 5, pp. 24782484. https://doi.org/10.1038/nprot.2006.377

23. Leigh, F., Kalendar, R., Lea, V., Lee, D., Donini, P., and Schulman, A., Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques, Mol. Gen. Genom., 2003, no. 269, pp. 464474. https://doi.org/10.1007/s00438-003-0850-2

24. Schnell, J., Steele, M., Bean, J., Neuspiel, M., Girard, C., Dormann, N., Pearson, C., Savoie, A., Bourbonniere, L., and Macdonald, P., A comparative analysis of insertional effects in genetically engineered plants: considerations for pre-market assessments, Transgen. Res., 2015, vol. 24, no. 1, pp. 117. https://doi.org/10.1007/s11248-014-9843-7

25. Kaya, Y., Yilmaz, S., Gozukirmizi, N., and Huyop, F., Evaluation of transgenic Nicotiana tabacum with dehE gene using transposon based IRAP markers, Am. J. Plant Sci., 2013, vol. 4, no. 8A, pp. 4144. https://doi.org/10.4236/ajps.2013.48A005

26. Rao, J., Yang, L., Guo, J., Quan, S., Chen, G., Zhao, X., Zhang, D., and Shi, J., Development of event-specific qualitative and quantitative PCR detection methods for the transgenic maize BVLA430101, Eur. Food Res. Technol., 2016, vol. 242, no. 8, pp. 12771284.

27. Bavol, A.V., Dubrovna, O.V., and Morgun, B.V., Genetic transformation and analysis of wheat transgenic cell lines by IRAP-PCR, Biotechnol. Acta, 2013, vol. 6, no. 6, pp. 113119.

28. Bhatt, A., Lister, C., Crawford, N., and Dean, C., The transposition frequency of Tag1 elements is increased in transgenic Arabidopsis lines, Plant Cell, 1998, no. 10, pp. 427434.

29. Wu, R., Guo, W., Wang, X., Wang, X., Zhuang, T., Clarke, J., and Liu, B., Unintended consequence of plant transformation: biolistic transformation caused transpositional activation of an endogenous retrotransposon Tos17 in rice ssp. japonica cv. Matsumae, Plant Cell Rep., 2009, vol. 28, no. 7, pp. 10431051. https://doi.org/10.1007/s00299-009-0704-4

30. Yuzbasioglu, G., Marakli, S., and Gozukirmizi, N., Screening of Oryza sativa L. for hpt gene and evaluation of hpt positive samples using Houba retransposon-based IRAP markers, Turk. J. Agric. Res., 2017, vol. 4, no. 1, pp. 5964. https://doi.org/10.19159/tutad.300702

31. Dubrovna, O.V., Goncharuk, O.M., and Velikozhon, L.G., IRAP-analysis of genetically modified wheat plants obtained by Agrobacterium-mediated transformation in vitro, Fiziol. Rast. Genet., 2017, vol. 49, no. 2, pp. 110119. https://doi.org/10.15407/frg2017.02.110

32. Bavol, A.V., Dubrovna, O.V., Goncharuk, O.M., and Voronova, S.S., Agrobacterium-mediated transformation of wheat using calli culture, Fakt. Eksp. Evol. Organism., 2014, no. 15, pp. 1619.

33. Trebichalsko, A., Kalendar, R., Schulman, A., Stra-tula, O., Galova, Z., Balazova, Z., and Chnapek, M., Detection of genetic relationships among spring and winter triticale (Triticosecale Witt.) and rye cultivars (Secale cereale L.) by using retrotransposon-based markers, Czech J. Genet. Plant Breed., 2013, no. 49, pp. 171174.

34. Bavol, A.V., Velikozhon, L.G., Pykalo, S.V., and Dubrovna, O.V., IRAP-analysis of triticale plants regenerants, resistant to water deficit, Fakt. Eksp. Evol. Organism., 2016, no. 19, pp. 7378.

35. Bhattm, A.M., Lister, C., Crawford, N., and Dean, C., The transposition frequency of Tag1 elements is increased in transgenic Arabidopsis lines, Plant Cell, 1998, no. 10, pp. 427434.

36. Casacuberta, J.M. and Santiago, N., Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes, Gene, 2003, no. 311, pp. 111. https://doi.org/10.1016/S0378-1119(03)00557-2

37. Lister, R., OMalley R., Tonti-Filippini J., Gregory B., Berry C., Miller A., Ecker J. Highly integrated single-base resolution maps of the epigenome in Arabidopsis, Cell, 2008, no. 133, pp. 523536. https://doi.org/10.1016/j.cell.2008.03.029

38. Choulet, F., Wicker, T., Rustenholz, C., Paux, E., Salse, J., Leroy, P., Schlub, S., Le Paslier, M., Magdelenat, G., Gonthier, C., Couloux, A., Budak, H., Breen, J., Pumphrey, M., Liu, S., Kong, X., Jia, J., Gut, M., Brunel, D., Anderson, J., Gill, B., Appels, R., Keller, B., and Feuillet, C., Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces, Plant Cell, 2010, vol. 22, no. 6, pp. 16861701. https://doi.org/10.1105/tpc.110.074187

39. Vicient, C.M., Transcriptional activity of transposable elements in maize, BMC Genomics, 2010, vol. 11, no. 601, pp. 110. https://doi.org/10.1186/1471-2164-11-601

40. Tishchenko, O.M., Komisarenko, A.G., Mykhalska, S.I., Sergeeva, L.E., Adamenko, N.I., Morgun, B.V., and Kochetov, A.V., Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.) in vitro and in planta using LBA4404 strain harboring binary vector pBI2E with dsRNA-suppressor of proline dehydrogenase gene, Cytol. Genet., 2014, vol. 48, no. 4, pp. 218226. https://doi.org/10.3103/S0095452714040094

41. Martienssen, R.A. and Colot, V., DNA methylation and epigenetic inheritance in plants and filamentous fungi, Science, 2001, vol. 293, pp. 10701074. https://doi.org/10.1126/science.293.5532.1070

42. Mello, C.C. and Conte, D., Jr., Revealing the world of RNA interference, Nature, 2004, vol. 431, pp. 338342. https://doi.org/10.1038/nature02872

43. Meister, G. and Tuschl, T., Mechanisms of gene silencing by double-stranded RNA, Nature, 2004, vol. 431, pp. 3439.

44. Verdel, A., Jia, S., Gerber, S., Sugiyama, T., Gygi, S., Grewal, S.I., and Moazed, D., RNAi-mediated targeting of heterochromatin by the RITS complex, Science, 2004, vol. 303, no. 5658, pp. 672676. https://doi.org/10.1126/science.1093686

45. Mette, M.F., Aufsatz, W., van der Winden, J., Matzke, M.A., and Matzke, A.J., Transcriptional silencing and promoter methylation triggered by double-stranded RNA, EMBO J., 2000, pp. 51945201. https://doi.org/10.1093/emboj/19.19.5194

46. Gvozdev, V.A., Mobile genes and RNA interference, Genetics, 2003, vol. 39, pp. 151156.

47. Makarova, Yu.A. and Cramers, D.A., Noncoding RNA, Biochemistry, 2007, vol. 72, no. 11, pp. 14271448.

48. Alder, M.N., Dames, S., Gaudet, J., and Mango, S.E., Gene silencing in Caenorhabditis elegans by transitive RNA interference, RNA, 2003, vol. 9, pp. 2532.

49. Sijen, T., Fleenor, J., Simmer, F., Thijssen, K.L., Parrish, S., Timmons, L., Plasterk, R.H., and Fire, A., On the role of RNA amplification in dsRNA-triggered gene silencing, Cell, 2001, vol. 107, pp. 465476.

Copyright© ICBGE 2002-2021 Coded & Designed by Volodymyr Duplij Modified 26.10.21