TSitologiya i Genetika 2021, vol. 55, no. 2, 3-14
Cytology and Genetics 2021, vol. 55, no. 2, 107–116, doi: https://www.doi.org/10.3103/S0095452721020080

Sources of chromosomal polymorphism of microsporocytes in species of Lilium L.та Allium L: cytomixis, extra chromosomes, chromatin diminuation

Kravets E.A., Plohovskaya S.G., Horyunova I.I., Yemets A.I., Blume Ya.B.

  • Institute of Food Biotechnology and Genomics of National Academy of Sciences of Ukraine, Ukraine, 04123, Kiev, Osypovskoho str., 2a

SUMMARY. Cytomixis and chromosomal polymorphism of micro-sporocytes in microsporogenesis of species Lilium cro-ceum Chaix., Allium fistulosum L. and A. cepa L. were studied. It was found that the main cytomictic events are associated with the early prophase of meiosis and are obligatory (constitutive) for the studied species. In metaphase microsporocytes, the so-called extra-chromosomes, presumably of cytomictic origin, were identified. They are characterized by the disintegration of homologues and associations with bivalents of the basik ka-ryotype with the formation of secondary associations of chromosomes. Extra chromosomes are present not only in hyperchromosomal, but in eu- and hypochromosomal microsporocytes. The most of extra chromosomes seem to be the «genetic ballast» for the cell, which it gets rid of using a wide range of cellular tools, in particular: chromosomal rearrangements, chromatin diminution, asymmetry of division, cytomixis, and programmed cell death. Nevertheless, some extra chromosomes can participate in the rearrangement of the microsporocyte and microspore karyotype.

Keywords: microsporogenesis, cytomixis, extra chromosomes, secondary chromosome associations, chromatin diminution, Lilium croceum Chaix., Allium fistulosum L., A. cepa L.

TSitologiya i Genetika
2021, vol. 55, no. 2, 3-14

Current Issue
Cytology and Genetics
2021, vol. 55, no. 2, 107–116,
doi: 10.3103/S0095452721020080

Full text and supplemented materials

References

1. Bala, S. and Gupta, R.C., Effect of secondary associations on meiosis, pollen fertility and pollen size in cape gooseberry (Physalis peruviana L.), Chromosome Bot., 2011, vol. 6, pp. 25–28. https://doi.org/10.3199/iscb.6.25

2. Bellucci, M., Roscini, C., and Mariani, A., Cytomixis in the pollen mother cells of Medicago sativa L., J. Hered., 2003, vol. 94, pp. 512–516. https://doi.org/10.1093/jhered/esg096

3. Bhattacharya, A. and Datta, A.K., Secondary chromosome associations in Uraria picta (Jacq.) DC (Family: Leguminosae), Cytologia, 2010, vol. 75, pp. 37–40. https://doi.org/10.1508/cyto-logia.75.37

4. Bretagnolle, F. and Thompson, J.D., Gametes with the somatic (sic) chromosome number: mechanisms of their formation and role in the evolution of autopolypoid plants, N. Phytol., 1995, vol. 129, no. 1, pp. 1–22. https://doi.org/10.1111/j.1469-8137.1995.tb03005.x

5. Cai, X. and Xu, S.S., Meiosis-driven genome variation in plants, Curr. Genomics, 2007, vol. 8, pp. 151–161. doi 10. 2174/138920207780833847

6. Cheng, K.C., Nie, X.W., Wang, Y.X., and Yang, Q.L., The relation between cytomixis and variation of chromosome numbers in pollen mother cells of rye (Secale cereale L.), Acta Bot. Sin., 1980, vol. 22, pp. 216–220.

7. Das, A., Datta, A.K., and Ghose, S., Cytogenetical studies on two varieties of Withania somnifera, J. Trop. Med. Plants, 2009, vol. 10, pp. 249–256.

8. De Storme, N. and Mason, A., Plant speciation through chromosome instability and ploidy change: cellular mechanisms, molecular factors and evolutionary relevance, Curr. Plant Biol., 2014, vol. 1, pp. 10–33. https://doi.org/10.1016/j.cpb.2014.09.002

9. Falistocco, E., Tosti, N., and Falcinelli, M., Cytomixis in pollen mother cells of diploid Dactylis, one of the origins of 2n gametes, J. Heredity, 1995, vol. 86, pp. 448–453. https://doi.org/10.1093/oxfordjournals. jhered.a111619

10. Fuentes, I., Stegemann, S., Golczyk, H., et al., Horizontal genome transfer as an asexual path to the formation of new species, Nature, 2014, vol. 511, pp. 232–235. https://doi.org/10.1038/nature13291

11. Gayen, P. and Sarkar, K.R., Cytomixis in maize haploids, Indian J. Genet. Plant Breed., 1996, vol. 56, no. 1, pp. 79–85.

12. Ghaffari, S.M., Occurrence of diploid and polyploid microspores in Sorghum bicolor (Poaceae) is the result of cytomixis, Afr. J. Biotech., 2006, vol. 5, pp. 1450–1453. https://doi.org/10.5897/AJB06.338

13. Grishanin, A.K., Shekhovtsov, S.V., Boykova, T.V., Akifyev, A.P., and Zhimulev, I.F., The problem of chromatin diminution at the border of the XX and XXI centuries, Cytology, 2006, vol. 48, no. 5, pp. 379–397. pmid: 16892848

14. Guan, J.Z., Wang, J.J., Cheng, Z.H., Liu, Y., and Li, Z.Y., Cytomixis and meiotic abnormalities during micro-sporogenesis are responsible for male sterility and chromosome variations in Houttuynia cordata, Genet. Mol. Res., 2012, vol. 11, pp. 121–130. https://doi.org/10.4238/2012.January.17.2

15. Hizume, M., Sato, S., and Tanaka, A., A highly reproducible method of nucleolus organizer regions staining in plants, Stain Technol., 1980, vol. 55, pp. 87–90. pmid: 6157230

16. Jelesko, J.G., Harper, R., Furuya, M., and Gruissem, W., Rare germinal unequal crossing-over leading to recombinant gene formation and gene duplication in Arabidopsis thaliana, Proc. Natl. Acad. Sci. U. S. A., 1999, vol. 18, pp. 10302–10307. https://doi.org/10.1073/pnas.96.18.10302

17. Kravets, E.A., Cellular and tissue mechanisms of recovery processes in Hordeum distichum L. under irradiation, Cytol. Genet., 2009, vol. 43, no. 1, pp. 9–17. https://doi.org/10.3103/S0095452709010022

18. Kravets, E.A., Nature, significance, and cytological consequences of cytomixis, Cytol. Genet., 2012, vol. 46, no. 3, pp. 188–195. https://doi.org/10.3103/S0095452712030061

19. Kravets, E.A., Cytomixis and its role in the regulation of plant fertility, Russ. J. Dev. Biol., 2013, vol. 44, no. 3, pp. 113–128. https://doi.org/10.1134/s1062360413030028

20. Kravets, E.A., Cytomixis as a primary form of sexual process, Adv. Cytol. Pathol., 2018, vol. 3, no. 5, pp. 88–91. https://doi.org/10.15406/acp.2018.03.00059

21. Kravets, E.A., Mykheyev, A.N., Ovsyannikova, L.G., and Grodzynsky, D.M., Critical level of radiation damage of root apical meristem and mechanisms for its recovery in Pisum sativum L., Cytol. Genet., 2011, vol. 45, no. 1, pp. 18–26. https://doi.org/10.3103/S0095452711010051

22. Kravets, E.A., Berezhnaya, V.V., Sakada, V.I., Rashydov, N.M., and Grodzinsky, D.M., Structural architectonics of the root apical meristem in connection with quantitative evaluation of its radiation damage, Cytol. Genet., 2012, vol. 46, no. 2, pp. 63–73. https://doi.org/10.3103/S0095452712020016

23. Kravets, E.A., Sidorchuk, Yu.V., Horyunova, I.I., Plohovskaya, S.H., Mursalimov, S.R., Deineko, E.V., Yemets, A.I., and Blume, Ya.B., Intra- and intertissular cytomictic interactions in the microsporogenesis of mono- and dicotyledonous plants, Cytol. Genet., 2016, vol. 50, no. 5, pp. 267–277. https://doi.org/10.3103/s0095452716050054

24. Kravets, E.A., Yemets, A.I., and Blume, Ya.B., Cellular mechanisms of nuclear migration, Cytol. Genet., 2017, vol. 51, no. 3, pp. 192–201. https://doi.org/10.3103/S0095452717030069

25. Kravets, E.A., Yemets, A.I., and Blume, Ya.B., Cytoskeleton and nucleoskeleton involvement in processes of cytomixis in plants, Cell Biol. Int., 2019, vol. 43, no. 9, pp. 999–1009. https://doi.org/10.1002/cbin.10842

26. Kumar, P. and Singhal, V.K., Male meiosis, morphometric analysis and distribution pattern of 2x and 4x cytotypes of Ranunculus hirtellus Royle (Ranunculaceae) from the cold regions of Northwest Himalayas (India), Comp. Cytogenet., 2011, vol. 5, pp. 143–161. https://doi.org/10.3897/CompCytogen.v5i3.1359

27. Kumar, G. and Chaudhary, N., Secondary chromosomal association in kidney bean (Phaseolus vulgaris L.), Jordan J. Biol. Sci., 2014, vol. 7, no. 1, pp. 71–74. https://doi.org/10.12816/0008217

28. Kumar, G. and Singh, S., Enigmatic phenomenon of secondary association among bivalents in Guar (Cyamopsis tetragonoloba (L.) Taub.), Cytol. Genet., 2018, vol. 52, no. 6, pp. 478–483. https://doi.org/10.3103/S0095452718060075

29. Kumar, G. and Singh, S., Induced cytomictic crosstalk behaviour among micro-meiocytes of Cyamopsis tetragonoloba (L.) Taub. (cluster bean): reasons and repercussions, Caryologia, 2020, vol. 73, no. 2, pp. 111–119.https://doi.org/10.13128/caryologia-544

30. Lattoo, S.K., Khan, S., Bamotra, S., and Dhar, A.K., Cytomixis impairs meiosis and influences reproductive success in Chlorophytum comosum (Thunb) Jacq.—an additional strategy and possible implications, J. Biosci., 2006, vol. 31, pp. 629–637. https://doi.org/10.1007/BF02708415

31. Malallah, G.A. and Attia, T.A., Cytomixis and its possible evolutionary role in a Kuwaiti population of Diplotaxis harra (Brassicaceae), Bot. J. Linn. Soc., 2003, vol. 143, pp. 169–175. https://doi.org/10.1046/j.1095-8339.2003.00218.x

32. Malgwi, M.M., Oyewole, S.O., and Khan, A.U., Chromosomes and secondary associations in tetraploid Cleome polyanthera L., Nucleus, 1997, vol. 40, pp. 20–25.

33. Mandal, A. and Datta, A.K., Secondary chromosome associations and cytomixis in Corchorus spp., Cytologia, 2011, vol. 76, no. 3, pp. 337–343. https://doi.org/10.1508/cytologia.76.337

34. Mandal, A., Datta, A.K., Gupta, S., et al., Cytomixis—a unique phenomenon in animal and plant, Protoplasma, 2013, vol. 250, no. 5, pp. 985–996. https://doi.org/10.1007/s00709-013-0493-z

35. Mursalimov, S. and Deineko, E., Cytomixis in plants: facts and doubts, Protoplasma, 2017, vol. 255, no. 3, pp. 719–731. https://doi.org/10.1007/s00709-017-1188-7

36. Mursalimov, S., Sidorchuk, Yu., and Deineko, E., New insights into cytomixis: specific cellular features and prevalence in higher plants, Planta, 2013, vol. 238, no. 3, pp. 415–423. https://doi.org/10.1007/s00425-013-1914-0

37. Mursalimov, S.R., Sidorchuk, Y.V., and Deineko, E.V., Analysis of cytoskeleton in the cells involved in cytomixis: the migrated chromatin displays an MT-organizing activity and can interact with the spindle, Biologia, 2019, vol. 74, no. 5, pp. 555–562. https://doi.org/10.2478/s11756-019-00203-4

38. Pierre, M.O. and de Sousa, S.M., Citomixia em plantas: causas, mecanismos e consequencias, R. Bras. Biosci., 2011, vol. 9, pp. 231–240.

39. Reis, A.C., Sousa, S.M., and Viccini, L.F., High frequency of cytomixis observed at zygotene in tetraploid Lippia alba, Plant Syst. Evol., 2015, vol. 302, no. 1, pp. 121–127. https://doi.org/10.1007/s00606-015-1249-3

40. Sapre, A.B. and Deshpande, D.S., A change in chromosome number due to cytomixis in an interspecific hybrid of Coix L., Cytologia, 1987, vol. 52, pp. 167–174. https://doi.org/10.1508/cytologia.52.167

41. Sidorchuk, Yu.V., Kravets, E.A., Mursalimov, S.R., Plokhovskaya, S.G., Goryunova, I.I., Emets, A.I., Blume, Y.B., and Deineko, E.V., Efficiency of the induction of cytomixis in the microsporogenesis of dicotyledonous (N. tabacum L.) and monocotyledonous (H. distichum L.) plants by thermal stress, Russ. J. Dev. Biol., 2016, vol. 47, no. 6, pp. 335–347. https://doi.org/10.1134/s1062360413030028

42. Singhal, V.K. and Kumar, P., Impact of cytomixis on meiosis, pollen viability and pollen size in wild populations of Himalayan poppy (Meconopsis aculeate Royle), J. Biosci., 2008, vol. 33, pp. 371–380. https://doi.org/10.1007/s12038-008-0057-0

43. Singhal, V.K., Rana, P.K., Kumar, P., and Kaur, D., Persistent occurrence of meiotic abnormalities in a new hexaploid cytotype of Thalictrum foetidum from Indian cold deserts, Biologia, 2011, vol. 66, pp. 58–464. https://doi.org/10.2478/s11756-011-0033-2

44. Streit, A., Silencing by throwing away: a role for chromatin diminution, Dev. Cell, 2012, vol. 23, no. 5, pp. 918–919. https://doi.org/10.1016/j.devcel.2012.10.022

45. Wu, W., Zheng, Y.L., Yang, R.W., Chen, L., et al., Variation of the chromosome number and cytomixis of Houttuynia cordata from China, J. Syst. Evol., 2003, vol. 41, pp. 245–257.

46. Zheng, G.C., Yang, Q.R., and Zheng, Y.R., The relationship between cytomixis and chromosome mutation and karyotype evolution in lily, Caryologia, 1987, vol. 40, pp. 243–259. https://doi.org/10.1080/00087114.1987.10797827

47. Zickler, D. and Kleckner, N., Recombination, pairing, and synapsis of homologs during meiosis, Cold Spring Harb. Perspect. Biol., 2015. https://doi.org/10.1101/cshperspect.a016626