ISSN 0564-3783  



Main page
Contacts
Themes
Archive  
Themes
Subscription
Information to authors
Editorial board
Mobile version


In Ukrainian

Export citations
UNIMARC
BibTeX
RIS





Potential role of protein kinases SnRK1 in regulation of cell division of Arabidopsis thaliana

Krasnoperova E.E., Buy D.D., Goriunova I.I., Isayenkov S.V., Karpov P.A., Blume Ya.B., Yemets A.I.

 


[Free Full Text (pdf)]Article Free Full Text (pdf)  

SUMMARY. It is well known that the SNF1-related protein kinase-1 (SnRK1) subfamily is involved in the regulation of carbohydrate metabolism and energy balance. These enzymes are multifunctional and can participate in many other important cellular processes. In this work, the role of protein kinases SnRK1 (KIN10 and KIN11) in the regulation of the cell division of Arabidopsis tha-liana was studied. For this purpose, A. thaliana kin10 and kin11 knockout lines (http://arabidopsis.info/) were used. The cells of these mutant lines exhibited the low mitotic index. The expression level of the cell pro-liferation markers Ц CYCB1, 1 (cyclin B) and plant BRCA1 homolog (Breast Cancer Suppressor Protein) was reduced too. A significantly smaller mitotic index and expression level of CYCB1, 1 and BRCA1 genes were found in the mutants that were grown under energy starvation conditions. High level of expression of CYCB1, 1/BRCA1 and KIN10/KIN11 genes in A. thaliana cell suspension culture was also revealed in comparison to Arabidopsis seedlings. Obtained data may indicate the possible role of protein kinases KIN10/KIN11 in regulation of cell proliferative activity.

Key words: protein kinases, Arabidopsis thaliana, SnRK1, KIN10, KIN11, gene expression, mitotic markers, cell division

Tsitologiya i Genetika 2019, vol. 53, no. 3, pp. 3-11

E-mail: krasnopio524 gmail.com, denisbuy90 gmail.com, inna.horiunova.ukr gmail.com, stan.isayenkov gmail.com, karpov.p.a gmail.com, cellbio cellbio.freenet.viaduk.net, yemets.alla gmail.com

Krasnoperova E.E., Buy D.D., Goriunova I.I., Isayenkov S.V., Karpov P.A., Blume Ya.B., Yemets A.I. Potential role of protein kinases SnRK1 in regulation of cell division of Arabidopsis thaliana, Tsitol Genet., 2019, vol. 53, no. 3, pp. 3-11.

In "Cytology and Genetics":
O. E. Krasnoperova, D. D. Buy, I. I. Goriunova, S. V. Isayenkov, P. A. Karpov, Ya. B. Blume, A. I. Yemets The Potential Role of SnRK1 Protein Kinases in the Regulation of Cell Division in Arabidopsis thaliana, Cytol Genet., 2019, vol. 53, no. 3, pp. 185Ц191
DOI: 10.3103/S0095452719030022


References

1. Wang, L., Hu, W., Sun, J., Liang, X., Yang, X., We, S., Wang, X., Zhou, Y., Xiao, Q., Yang, G., and He, G., Genome-wide analysis of SnRK gene family in Brachypodium distachyon and functional characterization of BdSnRK2.9, Plant Sci., 2015, vol. 237, pp. 35Ц45. https://doi.org/10.1016/j.plantsci.2015.05.008

2. Wang, Y., Berkowitz, O., Selinski, J., Xu, Y., Hartmann, A., and Whelan, J., Stress responsive mitochondrial proteins in Arabidopsis thaliana, Free Radic. Biol. Med., 2018, vol. 122, pp. 28Ц39. https://doi.org/10.1016/j.freeradbiomed.2018.03.031

3. Wang, X., Wang, L., Wang, Y., Liu, H., Hu, D., Zhang, N., Zhang, S., Cao, H., Cao, Q., Zhang, Z., Tang, S., Song, D., and Wang, C., Arabidopsis PCaP2 plays an important role in chilling tolerance and ABA response by activating CBF- and SnRK2-mediated transcriptional regulatory network, Front. Plant Sci., 2018, vol. 9, no. 215. https://doi.org/10.3389/fpls.2018.00215

4. Halford, N.G. and Hey, S.J., Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants, Biochem. J., 2009, vol. 419, no. 2, pp. 247Ц259. https://doi.org/10.1042/BJ20082408

5. Polge, C. and Thomas, M., SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control?, Trends Plant Sci., 2007, vol. 21, no. 1, pp. 20Ц28. https://doi.org/10.1016/j.tplants.2006.11.005

6. Lumbreras, V., Alba, M.M., Kleinow, T., Koncz, C., and Pages, M., Domain fusion between SNF1-related kinase subunits during plant evolution, EMBO Rep., 2001, vol. 2, no. 1, pp. 55Ц60. https://doi.org/10.1093/emboreports/kve001

7. Karpov, P.A., Rayevsky, A.V., Krasnoperova, E.E., Isayenkov, S.V., Yemets, A.I., and Blume, Ya.B., Protein kinase KIN10 from Arabidopsis thaliana as a potential regulator of primary microtubule nucleation centers in plants, Cytol. Genet., 2017, vol. 51, no. 6, pp. 415Ц421. https://doi.org/10.3103/S0095452717060056

8. Tsai, A.Y.L. and Gazzarrini, S., Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture, Front. Plant Sci., 2014. https://doi.org/10.3389/fpls.2014.00119

9. Zhai, Z., Liu, H., and Shanklin, J., Phosphorylation of WRINKLED1 by KIN10 results in its proteasomal degradation, providing a link between energy homeostasis and lipid biosynthesis, Plant Cell, 2017, vol. 29, no. 4, pp. 871Ц889. https://doi.org/10.1105/tpc.17.00019

10. Shen, W., Reyes, M.I., and Hanley-Bowdoin, L., Arabidopsis protein kinases GRIK1 and GRIK2 specifically activate SnRK1 by phosphorylating its activation loop, Plant Physiol., 2009, vol. 150, no. 2, pp. 996Ц1005. https://doi.org/10.1104/pp.108.132787

11. Mohannath, G., Jackel, J.N., Lee, Y.H., Buchmann, R.C., Wang, H., Patil, V., Adams, A.K., and Bisaro, D.M., A complex containing SNF1-related kinase (SnRK1) and adenosine kinase in Arabidopsis, PLoS One, 2014, vol. 149, no. 4, e87592. https://doi.org/10.1371/journal.pone.0087592

12. Wang, F., Ye, Y., Chen, X., Wang, J., Chen, Z., and Zhou, Q., A sucrose non-fermenting-1-related protein kinase 1 gene from potato, StSnRK1, regulates carbohydrate metabolism in transgenic tobacco, Physiol. Mol. Biol. Plants, 2017, vol. 23, no. 4, pp. 933Ц943. https://doi.org/10.1007/s12298-017-0473-4

13. Simon, N.M., Kusakina, J., Fernández-López, A., Chembath, A., Belbin, F.E., and Dodd, A.N., The energy-signalling hub SnRK1 is important for sucrose-induced hypocotyl elongation, Plant Physiol., 2018, vol. 176, pp. 1299Ц1310. https://doi.org/10.1104/pp.17.01395

14. Mair, A., Pedrotti, L., Wurzinger, B., Anrather, D., Simeunovic, A., Weiste, C., Valerio, C., Dietrich, K., Kirchler, T., Nagele, T., Carbajosa, J.V., Hanson, J., Baena-González, E., Chaban, C., Weckwerth, W., Dröge-Laser, W., and Teige, M., SnRK1-triggered switch of bZIP63 dimerization mediates the low energy response in plants, Elife, 2015. https://doi.org/10.7554/eLife.05828

15. Chen, L., Su, Z., Huang, L., Xia, F., Qi, H., Xie, L., Xiao, S., and Chen, Q.-F., The AMP-activated protein kinase KIN10 is involved in the regulation of autophagy in Arabidopsis, Front. Plant Sci., 2017, vol. 8. https://doi.org/10.3389/fpls.2017.01201

16. Nunes, C., OТHara, L.E., Primavesi, L.F., Delatte, T.L., Schluepmann, H., Somsen, G.W., Silva, A.B., Fevereiro, P.S., Wingler, A., and Paul, M.J., The trehalose 6-phosphate/SnRK1 signaling pathway primes growth recovery following relief of sink limitation, Plant Physiol., 2013, vol. 162, no. 3, pp. 1720Ц1732. https://doi.org/10.1104/pp.113.220657

17. Martínez-Barajas, E., Delatte, T., Schluepmann, H., de Jong, G.J., Somsen, G.W., Nunes, C., Primavesi, L.F., Coello, P., Mitchell, R.A.C., and Paul, M.J., Wheat grain development is characterized by remarkable trehalose 6-phosphate accumulation pregrain filling: tissue distribution and relationship to SNF1-related protein kinase1 activity, Plant Physiol., 2011, vol. 156, no. 1, pp. 373Ц381. https://doi.org/10.1104/pp.111.174524

18. Jeong, E.-Y., Seo, P.J., Woo, J.C., and Park, C.-M., AKIN10 delays flowering by inactivating IDD8 transcription factor through protein phosphorylation in Arabidopsis, BMC Plant Biol., 2015, vol. 15, no. 110. https://doi.org/10.1186/s12870-015-0503-8

19. Im, J.H., Cho, Y.H., Kim, G.D., Kang, G.H., Hong, J.W., and Yoo, S.D., Inverse modulation of the energy sensor Snf1-related protein kinase 1 on hypoxia adaptation and salt stress tolerance in Arabidopsis thaliana, Plant Cell Environ., 2014, vol. 10, pp. 2303Ц2312. https://doi.org/10.1111/pce.12375

20. Krasnoperova, E.E., Isayenkov, S.V., Karpov, P.A., and Yemets, A.I., The cladistic analysis and characteristic of an expression of serine/threonine protein kinase KIN10 in different organs of Arabidopsis thaliana, Rep. Natl. Acad. Sci. Ukraine, 2016, no. 1, pp. 81Ц91. . https://doi.org/10.15407/dopovidi2016.01.081

21. Yemets, A.I., Lloyd, C., and Blume, Ya.B., Plant tubulin phosphorylation and its role in cell cycle progression, in The Plant Cytoskeleton: A Key Tool for Agro-Biotechnology, Netherlands: Springer, 2008, pp. 145Ц159. https://doi.org/10.1007/978-1-4020-8843-8

22. Crisanto, G., The Arabidopsis cell division cycle, Arabidopsis Book, 2009. no. 7, e0120. https://doi.org/10.1199/tab.0120

23. Trapp, O., Seeliger, K., and Puchta, H., Homologs of breast cancer genes in plants, Front Plant Sci., 2011, vol. 2, no. 19. https://doi.org/10.3389/fpls.2011.00019

24. Menges, M. and Murray, J.A., Murray synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity, Plant J., 2002, vol. 30, no. 2, pp. 203Ц212. https://doi.org/10.1046/j.1365-313X.2002.01274.x

25. Guzzo, F., Portaluppi, P., Grisi, R., Barone, S., Zampieri, S., Franssen, H., and Levi, M., Reduction of cell size induced by enod40 in Arabidopsis thaliana, J. Exp Bot., 2005, vol. 56, no. 412, pp. 507Ц513. https://doi.org/10.1093/jxb/eri028

26. Gamborg, O.L. and Eveleigh, D.E., Culture methods and detection of glucanases in cultures of wheat and barley, Can. J. Biochem., 1968, vol. 46, no. 5, pp. 417Ц421.

27. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2ЦΔΔC T method, Methods, 2001, vol. 25, no. 4, pp. 402Ц408. https://doi.org/10.1006/meth.2001.1262

28. Shevchenko, G.V., Talaliev, A.S., and Doonan, J., Arabidopsis thaliana seedlings from the Chernobyl NPP zone are tolerant to DNA-damaging agents, Rep. Natl. Acad. Sci. Ukraine, 2012, no. 12, pp. 157Ц162. https://doi.org/10.15407/dopovidi2017.04.084

29. Starita, L.M., Machida, Y., Sankaran, S., Elias, J.E., Griffin, K., Schlegel, B.P., Gygi, S.P., and Parvin, J.D., BRCA1-dependent ubiquitination of gamma-tubulin regulates centrosome number, Mol. Cell. Biol., 2004, vol. 24, no. 19, pp. 8457Ц8466. https://doi.org/10.1128/MCB.24.19.8457-8466.2004

30. Baena-González, E. and Sheen, J., Convergent energy and stress signaling, Trends Plant Sci., 2008, vol. 13, no. 9, pp. 474Ц482. https://doi.org/10.1016/j.tplants.2008.06.006

31. Sample, V., Ramamurthy, S., Gorshkov, K., Ronnett, G.V., and Zhang, J., Polarized activities of AMPK and BRSK in primary hippocampal neurons, Mol. Biol. Cell, 2015, vol. 26, no. 10, pp. 1935Ц1946. https://doi.org/10.1091/mbc.E14-02-0764

32. Alvarado-Kristensson, M., Rodríguez, M.J., Silio, V., Valpuesta, J.M., and Carrera, A.C., SADB phosphorylation of γ-tubulin regulates centrosome duplication, Nat. Cell Biol., 2009, vol. 11, no. 9, pp. 1081Ц1092. https://doi.org/10.1038/ncb1921

33. Dhumale, P., Menon, S., Chiang, J., and Püschel, A.W., The loss of the kinases SadA and SadB results in early neuronal apoptosis and a reduced number of progenitors, PLoS One, 2018, vol. 13, no. 4, e0196698. https://doi.org/10.1371/journal.pone.0196698

34. Eklund, G., Lang, S., Glindre, J., Ehlén, E., and Alvarado-Kristensson, M., The nuclear localization of γ‑tubulin is regulated by SadB-mediated phosphorylation, J. Biol. Chem., 2014, vol. 289, no. 31, pp. 21360Ц21373. https://doi.org/10.1074/jbc.M114.562389

Copyright© ICBGE 2002-2021 Coded & Designed by Volodymyr Duplij Modified 23.09.21