ISSN 0564-3783  



Main page
Contacts
Themes
Archive  
Themes
Subscription
Information to authors
Editorial board
Mobile version


In Ukrainian

Export citations
UNIMARC
BibTeX
RIS





Secondary metabolome and transcriptome of Streptomyces albus J1074 in liquid medium SG2

Koshla O.T., Rokytskyy I.V., Ostash I.S., Busche T., Kalinowski J., Mösker E., Süssmuth R.D., Fedorenko V.O., Ostash B.O.

 


[Free Full Text (pdf)]Article Free Full Text (pdf)  

SUMMARY. Streptomyces albus J1074 is one of the most popular chassis for heterologous expression of actinobacterial biosynthetic gene clusters (BGCs). Considerable efforts are invested into understanding all the physiological and genetic aspects of secondary metabolism of J1074 in order to maximize the expression of heterologous BGCs. It has to be noted that the J1074 genome itself is home to numerous (>20) BGCs, whose expression varies widely. Therefore, the identification of the factors limiting the expression of J1074 BGCs might help improve this strain for heterologous expression purposes. As first steps towards this goal, herein we describe the secondary metabolome of J1074 in liquid medium SG2, previously shown by us to support the production of antibacterial and antifungal compounds. We further compare the results of metabolomic studies with the transcriptome of J1074 in SG2 after 60 h of growth. Results of our studies are discussed in the context of current knowledge on the J1074 transcriptome and metabolome data.

Key words: Streptomyces albus J1074, secondary metabolism, RNA-seq

Tsitologiya i Genetika 2019, vol. 53, no. 1, pp. 3-10

E-mail: bohdan.ostash lnu.edu.ua, oksana.koshla lnu.edu.ua, igorrito gmail.com, iryna.ostash lnu.edu.ua, tbusche cebitec.uni-bielefeld.de, joern cebitec.uni-bielefeld.de, eva.moesker win.tu-berlin.de, roderich.suessmuth tu-berlin.de, viktor.fedorenko lnu.edu.ua

Koshla O.T., Rokytskyy I.V., Ostash I.S., Busche T., Kalinowski J., Mösker E., Süssmuth R.D., Fedorenko V.O., Ostash B.O. Secondary metabolome and transcriptome of Streptomyces albus J1074 in liquid medium SG2, Tsitol Genet., 2019, vol. 53, no. 1, pp. 3-10.

In "Cytology and Genetics":
O. T. Koshla, I. V. Rokytskyy, I. S. Ostash, T. Busche, J. Kalinowski, E. Mösker, R. D. Süssmuth, V. O. Fedorenko, B. O. Ostash Secondary Metabolome and Transcriptome of Streptomyces albus J1074 in Liquid Medium SG2, Cytol Genet., 2019, vol. 53, no. 1, pp. 17
DOI: 10.3103/S0095452719010080


References

1. Zaburannyi, N., Rabyk, M., Ostash, B., Fedorenko, V., and Luzhetskyy A., Insights into naturally minimised Streptomyces albus J1074 genome, BMC Genomics, 2014, vol. 15, pp. 97108. https://doi.org/10.1186/1471-2164-15-97

2. Bilyk, O. and Luzhetskyy, A., Host organism: Streptomyces, in Industrial Biotechnology, Wittmann, Ch. and Liao, J.C., Eds., Weinheim, Germany: Wiley-VCH Verlag GmbH & Co KGaA, 2017, chapter 13, pp. 487506. https://doi.org/10.1002/9783527807796.ch13 3. Brown, E.D. and Wright, G.D., Antibacterial drug discovery in the resistance era, Nature, 2016, vol. 529, no. 7586, pp. 336343. https://doi.org/10.1038/nature17042

4. Katz, M., Hover, B.M., and Brady, S.F., Culture-independent discovery of natural products from soil metagenomes, J. Ind. Microbiol. Biotechnol., 2016, vol. 43, no. 23, pp. 129141. https://doi.org/10.1007/s10295-015-1706-6

5. Olano C., García, I., González, A., Rodriguez, M., Rozas, D., Rubio, J., Sánchez-Hidalgo, M., Braña, A.F., Méndez, C., and Salas, J.A., Activation and identification of five clusters for secondary metabolites in Streptomyces albus J1074, Microb. Biotechnol., 2014, vol. 7, no. 3, pp. 242256. https://doi.org/10.1111/1751-7915.12116

6. Ahmed, Y., Rebets, Y., Tokovenko, B., Brötz, E., and Luzhetskyy, A., Identification of butenolide regulatory system controlling secondary metabolism in Streptomyces albus J1074, Sci. Rep., 2017, vol. 7, no. 1, pp. 9784. https://doi.org/10.1038/s41598-017-10316-y

7. Xu, F., Nazari, B., Moon, K., Bushin, L.B., and Seyedsayamdost, M.R., Discovery of a cryptic antifungal compound from Streptomyces albus J1074 using high-throughput elicitor screens, J. Am. Chem. Soc., 2017, vol. 139, no. 27, pp. 92039212. https://doi.org/10.1021/jacs.7b02716

8. Koshla, O., Lopatniuk, M., Rokytskyy, I., Yushchuk, O., Dacyuk, Y., Fedorenko, V., Luzhetskyy, A., and Ostash B., Properties of Streptomyces albus J1074 mutant deficient in tRNALeu UAA gene bldA, Arch. Microbiol., 2017, vol. 199, no. 8, pp. 11751183. https://doi.org/10.1007/s00203-017-1389-7

9. Bilyk, B. and Luzhetskyy, A., Unusual site-specific DNA integration into the highly active pseudo-attB of the Streptomyces albus J1074 genome, Appl. Microbiol. Biotechnol., 2014, vol. 98, no. 11, pp. 50955104. https://doi.org/10.1007/s00253-014-5605-y

10. Ishizuka, H., Horinouchi, S., Kieser, H.M., Hopwood, D.A., and Beppu, T., A putative two-component regulatory system involved in secondary metabolism in Streptomyces spp., J. Bacteriol., 1992, vol. 174, no. 23, pp. 75857594. https://doi.org/10.1128/jb.174.23.7585-7594.1992

11. Wittchen, M., Busche, T., Gaspar, A.H., Lee, J.H., Ton-That, H., Kalinowski, J., and Tauch A., Transcriptome sequencing of the human pathogen Corynebacterium diphtheriae NCTC 13129 provides detailed insights into its transcriptional landscape and into DtxR-mediated transcriptional regulation, BMC Genomics, 2018, vol. 19, no. 1, pp. 8292. https://doi.org/10.1186/s12864-018-4481-8

12. Pfeifer-Sancar, K., Mentz, A., Rückert, C., and Kalinowski, J., Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique, BMC Genomics, 2013, vol. 14, pp. 888899. https://doi.org/10.1186/1471-2164-14-888

13. Lopatniuk, M., Myronovskyi, M., and Luzhetskyy, A., Streptomyces albus: a new cell factory for non-canonical amino acids incorporation into ribosomally synthesized natural products, ACS Chem. Biol., 2017, vol. 12, no. 9, pp. 23622370.

14. Kallifidas, D., Jiang, G., Ding, Y., and Luesch, H., Rational engineering of Streptomyces albus J1074 for the overexpression of secondary metabolite gene clusters, Microb. Cell Fact., 2018, vol. 17, no. 1, pp. 2537. https://doi.org/10.1021/acschembio.7b00359

15. Horbal, L. and Luzhetskyy, A., Dual control system a novel scaffolding architecture of an inducible regulatory device for the precise regulation of gene expression, Metab. Eng., 2016, vol. 37, pp. 1123. https://doi.org/10.1016/j.ymben.2016.03.008

16. Landwehr, W., Wolf, C., and Wink, J., Actinobacteria and myxobacteriatwo of the most important bacterial resources for novel antibiotics, Curr. Top. Microbiol. Immunol., 2016, vol. 398, pp. 273302. https://doi.org/10.1007/82_2016_503

17. Urem, M., Świątek-Połatyńska, M.A., Rigali, S., and van Wezel, G.P., Intertwining nutrient-sensory networks and the control of antibiotic production in Streptomyces, Mol. Microbiol. 2016, vol. 102, no. 2, pp. 183195. https://doi.org/10.1111/mmi.13464

18. Braña, A.F., Rodríguez, M., Pahari, P., Rohr, J., García, L.A., and Blanco, G., Activation and silencing of secondary metabolites in Streptomyces albus and Streptomyces lividans after transformation with cosmids containing the thienamycin gene cluster from Streptomyces cattleya, Arch. Microbiol., 2014, vol. 196, no. 5, pp. 345355. https://doi.org/10.1007/s00203-014-0977-z

Copyright© ICBGE 2002-2021 Coded & Designed by Volodymyr Duplij Modified 18.09.21