Tsitologiya i Genetika, 2025, vol. 59, no. 2, 3–19. https://cytgen.com/en/2025/3-19N2V59.htm Нітовська та ін. «А*grobacterium*-опосередкована трансформація кукурудзи української селекції»

Table S1. Results of Agrobacterium-mediated transformation of maize according to separate experiments

	able SI	. 1(0)	uits				i iiicai	aica ii				Haiz	c ac	corar	ng to	Separe	<i>ate e</i> ₂	третп	1101113
Genotype	Vector			Number of					Regenerants in vitro			PCR analysis			ļ		Regenerants in the		
		Expe	Dono	explants after transformatio		\mathbf{k}_1	RFAT,	REAT max., pcs		paromomycin sensitive		for transgenes			\mathbf{k}_2	TF, %	soil		
		rime	r						n ₂			101 transgenes					3011		
		nt, no	plant, no	n procedure,						pcs		n ₄	+	TDF,	K2	11,70	n ₃	adapted	
				pcs							%								
				total	n_1									70				pcs	%
KP7	pCB271	1	24	80	40	1	2,5	1	0	nd	nd	0	nd	nd	0	0	0	nd	nd
	pBi2E	2	24	100	50	0	0	nd	0	nd	nd	0	nd	nd	0	0	0	nd	nd
PRZh5	pCB271	1	23	80	40	0	0	nd	0	nd	nd	0	nd	nd	0	0	0	nd	nd
KP7× PRZh5	pCB271	1	8	50	25	1	4,0	2	2	0	0	1	1	100	1	4,0	1	0	0
		2	13	50	25	14	56,0	6	38	28	73,7	4	4	100	4	16,0	4	2	50,0
	pBi2E	3	8	61	30	1	3,3	1	1	1	100	0	nd	nd	0	0	0	nd	nd
		4	13	50	25	9	36,0	5	23	19	82,6	4	4	100	4	16,0	2	1	50,0
	pCB202	5	8	66	33	0	0	nd	0	nd	nd	0	nd	nd	0	0	0	nd	nd
KS277	pCB271	1	15	50	25	0	0	nd	0	nd	nd	0	nd	nd	0	0	0	nd	nd
	pBi2E	2	15	50	25	0	0	nd	0	nd	nd	0	nd	nd	0	0	0	nd	nd
RS15	pCB271	1	14	50	25	0	0	nd	0	nd	nd	0	nd	nd	0	0	0	nd	nd
	pBi2E	2	14	50	25	0	0	nd	0	nd	nd	0	nd	nd	0	0	0	nd	nd
KS277× RS15	pCB271	1	18	40	20	3	15,0	3	6	2	33,3	2	2	100	2	10,0	4	1	25,0
	pCB202	2	18	30	15	3	20,0	2	4	0	0	2	2	100	2	13,3	3	2	66,7
	pBi2E	3	9	39	19	1	5,3	1	1	1	100	0	nd	nd	0	0	0	nd	nd
		4	18	40	20	5	25,0	2	7	5	71,4	2	2	100	2	10,0	1	0	0
RS15× KS277	pCB271	1	17	50	12	1	8,3	1	1	0	0	1	1	100	1	8,3	1	0	0
	pCB202	2	17	66	23	3	13,0	2	4	2	50,0	1	1	100	1	4,4	2	1	50,0
	pBi2E	3	17	50	25	2	8,0	5	6	4	66,7	1	1	100	1	4,0	1	0	0
		4	16	33	16	0	0	nd	0	nd	nd	nd	nd	nd	0	0	0	nd	nd
DK232	pCB271	1	1	33	16	1	6,3	2	2	2	100	0	nd	nd	0	0	0	nd	nd
		2	2	110	55	31	56,4	5	68	53	77,9	19	19	100	15	27,3	14	5	35,7
		3	25	100	50	4	8,0	1	4	2	50,0	2	2	100	2	4,0	3	1	33,3
	pCB202	4	1	34	17	2	11,8	2	4	3	75,0	1	1	100	1	5,9	1	0	0
		5	22	37	18	3	16,7	3	7	5	71,4	2	2	100	2	11,1	1	1	100
		6	25	100	50	0	0	nd	0	nd	nd	0	nd	nd	0	0	0	nd	nd
	pBi2E	7	1	43	21	1	4,8	1	1	1	100	0	nd	nd	0	0	0	nd	nd
		8	2	50	25	10	40,0	3	16	12	75,0	6	6	100	4	16,0	2	0	0
		9	25	100	50	2	4,0	1	2	1	50,0	1	1	100	1	2,0	1	0	0
DK959×	pCB271	1	11	39	10	4	40,0	1	4	1	25,0	nd	nd	nd	nd	nd	2	0	0
DK232	pBi2E	2	11	34	17	0	0	nd	0	nd	nd	nd	nd	nd	nd	nd	0	nd	nd
		•	•																

Notes:

 n_1 – a number of randomly selected explants, among which RFAT and TF were calculated, pcs;

 k_1 – a number of explants which formed plants after the transformation procedure, pcs;

RFAT – the regeneration frequency from calli on selective media after transformation;

REAT max. – the regeneration efficiency after transformation, i.e., the maximum number of shoots formed from one explant after transformation;

 n_2 – a number of regenerants obtained after the transformation procedure and planted in jars with the selective medium, pcs;

 n_4 – a number of plant DNA samples which were analyzed by PCR, pcs;

+ a number of DNA samples in which transgenes were detected, pcs;

TDF – the frequency of transgene detection;

k₂ – a number of explants which formed transgenic plants, pcs;

TF – the transformation frequency;

 n_3 – a number of regenerants which were planted into the soil, pcs;

nd – not determined.