Цитологія і генетика 2019, том 53, № 6, 83-85
Cytology and Genetics 2019, том 53, № 6, 502–509, doi: https://www.doi.org/10.3103/S0095452719060069

Association of the ACE (rs1800764) polymorphism with risk of diabetic kidney disease in Saudi Arabian population: a pilot study using the pcr-rflp method

MOHTHASH MUSAMBIL, KHALID AL-RU-BEAAN, AMAL SUFAYRAN, SARA AL-QASIM, DHEKRA AL-NAQEB

  • Department of Genetics, Strategic Center for Diabetes Research, King Saud University, Riyadh, Saudi Arabia
  • University Diabetes Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia

РЕЗЮМЕ. Діабетичне захворювання нирок (ДЗН), також відоме як діабетична нефропатія, – це основна причина термінальної стадії захворювання нирок, в етіології якої відіграє роль дуже багато генетичних та екологічних факторів. Вважається, що ген ангіотензин-перетворювального ферменту (ACE) відіграє важливу роль у розвитку та прогресуванні ДЗН. У цьому контрольованому дослідженні ми досліджували роль поліморфізму ACE T3892C (rs1800764) у розвитку ДЗН серед населення Саудівської Аравії. Ми залучили 150 пацієнтів з діабетом типу 2, що мали ДЗН, і 150 пацієнтів з діабетом типу 2 без ДЗН. Було проаналізовано відмінності за віком, статтю, систолічним артеріальним тиском (САТ), діастолічним артеріальним тиском (ДАТ), тривалістю діабету, рівнем глюкози у крові натщесерце, рівнем альбуміну у сечі, відношенням альбумін/креатинін, показниками сироваткової сечовини та сироватки-креатиніну між обома групами. Генотипування поліморфізму ACE T3892C виконали за допомогою методу полімеразної ланцюгової реакції – поліморфізму довжини рестрикційних фрагментів (ПЛР-ПДРФ). Частоти генотипів та алелів розраховували методом прямих підрахунків. Відхилення від закону Харді-Вайнберга (HWE) перевіряли за допомогою критерію Хі-квадрату (χ2) в обох досліджуваних групах. Відношення ризиків (OR) з довірчим інтервалом в 95 % використовували для оцінки зв’язку між поліморфізмом ACE T3892C та схильністю до ДЗН. Статистичний аналіз виконали за допомогою програмного забезпечення SPSS (версія 21.0) та програмного забезпечення Medcalc (версія 16.4.3). Було виявлено суттєві відмінності у частотності розподілу поліморфізму ACE T3892C для досліджуваної та контрольної груп, що означає можливу важливу роль гену ACE у патогенезі ДЗН серед населення Саудівської Аравії.

Ключові слова: діабетичне захворювання нирок, діабетична нефропатія, діабет 2 типу, ACE; поліморфізм гену; поліморфізм T3892C; rs1800764

Цитологія і генетика
2019, том 53, № 6, 83-85

Current Issue
Cytology and Genetics
2019, том 53, № 6, 502–509,
doi: 10.3103/S0095452719060069

Повний текст та додаткові матеріали

Цитована література

1. Ahluwalia, T.S., Ahuja, M., Rai, T.S., Kohli, H.S., Sud, K., Bhansali, A., and Khullar, M., Endothelial nitric oxide synthase gene haplotypes and diabetic nephropathy among Asian Indians, Mol. Cell. Biochem., 2008, vol. 314, nos. 1–2, pp. 9–17.

2. Wang, F., Fang, Q., Yu, N., Zhao, D., Zhang, Y., Wang, J., Wang, Q., Zhou, X., Cao, X., and Fan, X., Association between genetic polymorphism of the angiotensin-converting enzyme and diabetic nephropathy: a meta-analysis comprising 26580 subjects, J. Renin-Angiotensin-Aldosterone Syst., 2012, vol. 13, no. 1, pp. 161–174.

3. Ahluwalia, T.S., Ahuja, M., Rai, T.S., Kohli, H.S., Bhansali, A., Sud, K., and Khullar, M., ACE variants interact with the RAS pathway to confer risk and protection against type 2 diabetic nephropathy, DNA Cell Biol., 2009, vol. 28, no. 3, pp. 141–150.

4. Bessa, S.S.E.D. and Hamdy, S.M., Impact of nitric oxide synthase Glu298Asp polymorphism on the development of end-stage renal disease in type 2 diabetic Egyptian patients, Renal Failure, 2011, vol. 33, no. 9, pp. 878–884.

5. Seaquist, E.R., Goetz, F.C., Rich, S., and Barbosa, J., Familial clustering of diabetic kidney disease, N. Engl. J. Med., 1989, vol. 320, no. 18, pp. 1161–1165.

6. Agius, E., Attard, G., Shakespeare, L., Clark, P., Vidya, M.A., Hattersley, A.T., and Fava, S., Familial factors in diabetic nephropathy: an offspring study, Diabetic Med., 2006, vol. 23, no. 3, pp. 331–334.

7. Couser, W.G., Remuzzi, G., Mendis, S., and Tonelli, M., The contribution of chronic kidney disease to the global burden of major noncommunicable diseases, Kidney Int., 2011, vol. 80, no. 12, pp. 1258–1270.

8. Al-Rubeaan, K., Al-Manaa, H., Khoja, T., Ahmad, N., Al-Sharqawi, A., Siddiqui, K., AlNaqeb, D., Aburi-sheh, K., Youssef, A., and Al Ghamdia, A., The Saudi abnormal glucose metabolism and diabetes impact study (SAUDI-DM), Ann. Saudi Med., 2014, vol. 34, no. 6, p. 465.

9. Akbar, D.H., Mira, S.A., Zawawi, T.H., and Malibary, H.M., Subclinical diabetic neuropathy: a common complication in Saudi diabetics., Saudi Med. J., 2000, vol. 21, no. 5, pp. 433–437.

10. Alwakeel, J.S., Al-Suwaida, A., Isnani, A.C., Al-Harbi, A., and Alam, A., Concomitant macro and microvascular complications in diabetic nephropathy, Saudi J. Kidney Dis. Transplant., 2009, vol. 20, no. 3, p. 402.

11. Jiang, Z.S., Jia, H.X., Xing, W.J., Han, C.D., Wang, J., Zhang, Z.J., and Qu, W., Investigation of several biomarkers associated with diabetic nephropathy, Exp. Clin. Endocrinol. Diabetes, 2015, vol. 123, no. 1, pp. 1–6.

12. Wu, H., Kong, L., Zhou, S., Cui, W., Xu, F., Luo, M., Li, X., Tan, Y., and Miao, L., The role of microRNAs in diabetic nephropathy, J. Diabetes Res., 2014, vol. 2014, no. 1, pp. 12–13.

13. Ma, J., Chadban, S.J., Zhao, C.Y., Chen, X., Kwan, T., Panchapakesan, U., Pollock, C.A., and Wu, H., TLR4 activation promotes podocyte injury and interstitial fibrosis in diabetic nephropathy, PLoS One, 2014, vol. 9, no. 5. e97985.

14. Zhou, Y., Lv, C., Wu, C., Chen, F., Shao, Y., and Wang, Q., Suppressor of cytokine signaling (SOCS) 2 attenuates renal lesions in rats with diabetic nephropathy, Acta Histochem., 2014, vol. 116, no. 5, pp. 981–988.

15. Huo, P., Zhang, D., Guan, X., Mei, Y., Zheng, H., and Feng, X., Association between genetic polymorphisms of ACE & eNOS and diabetic nephropathy, Mol. Biol. Rep., 2015, vol. 42, no. 1, pp. 27–33.

16. Hu, J., Fan, X., Meng, X., Wang, Y., Liang, Q., and Luo, G., Evidence for the involvement of JAK/STAT/ SOCS pathway in the mechanism of Tangshen formula-treated diabetic nephropathy, Planta Med., 2014, vol. 80, no. 8, pp. 614–621.

17. Rahimi, Z., ACE insertion/deletion (I/D) polymorphism and diabetic nephropathy, J. Nephropathol., 2012, vol. 1, no. 3, p. 143.

18. Masuyer, G., Yates, C.J., Sturrock, E.D., and Acharya, K.R., Angiotensin-I converting enzyme (ACE): structure, biological roles, and molecular basis for chloride ion dependence, Biol. Chem., 2014, vol. 395, no. 10, pp. 1135–1149.

19. Wei, L.K., Menon, S., Griffiths, L.R., and Gan, S.H., Signaling pathway genes for blood pressure, folate and cholesterol levels among hypertensives: an epistasis analysis, J. Hum. Hypertens., 2015, vol. 29, no. 2, p. 99.

20. Bernstein, K.E., Giani, J.F., Shen, X.Z., and Gonzalez-Villalobos, R.A., Renal angiotensin-converting enzyme and blood pressure control, Curr. Opin. Nephrol. Hypertens., 2014, vol. 23, no. 2, p. 106.

21. Yates, C.J., Masuyer, G., Schwager, S.L., Akif, M., Sturrock, E.D., and Acharya, K.R., Molecular and thermodynamic mechanisms of the chloride-dependent human angiotensin-I-converting enzyme (ACE), J. Biol. Chem., 2014, vol. 289, no. 3, pp. 1798–1814.

22. Jeffers, B.W., Estacio, R.O., Raynolds, M.V., and Schrier, R.W., Angiotensin-converting enzyme gene polymorphism in non-insulin dependent diabetes mellitus and its relationship with diabetic nephropathy, Kidney Int., 1997, vol. 52, no. 2, pp. 473–477.

23. Movva, S., Alluri, R.V., Komandur, S., Vattam, K., Eppa, K., Mukkavali, K.K., Mubigonda, S., Saharia, S., Shastry, J.C., and Hasan, Q., Relationship of angiotensin-converting enzyme gene polymorphism with nephropathy associated with Type 2 diabetes mellitus in Asian Indians, J. Diabetes Complications, 2007, vol. 21, no. 4, pp. 237–241.

24. Ma, H., Yu, C., and Wang, R., Association of ACE polymorphism and diabetic nephropathy susceptibility, Int. J. Clin. Exp. Med., 2015, vol. 8, no. 2, p. 2962.

25. Gong, A.M., Li, X.Y., Wang, Y.Q., Yan, H.X., Xu, Z.X., Feng, Z., Xie, Y.Q., Yin, D.H., and Yang, S.Z., Association study of ACE polymorphisms and systemic lupus erythematosus in Northern Chinese Han population, Mol. Biol. Rep., 2012, vol. 39, no. 10, pp. 9485–9491.

26. Li, X., An J., Guo R., Jin Z., Li Y., Zhao Y., Lu F., Lian H., Liu P., and Jin X. Association of the genetic polymorphisms of the ACE gene and the eNOS gene with lupus nephropathy in northern Chinese population, BMC Med. Genet., 2010, vol. 11, no. 1, p. 94.

27. Al-Harbi, E.M., Farid, E.M., Gumaa, K.A., Masuadi, E.M., and Singh, J., Angiotensin-converting enzyme gene polymorphisms and T2DM in a case–control association study of the Bahraini population, Mol. Cell. Biochem., 2011, vol. 350, no. 1, pp. 119–125.

28. Ezzidi, I., Mtiraoui, N., Kacem, M., Chaieb, M., Mahjoub, T., and Almawi, W.Y., Identification of specific angiotensin-converting enzyme variants and haplotypes that confer risk and protection against type 2 diabetic nephropathy, Diabetes/Metab. Res. Rev., 2009, vol. 25, no. 8, pp. 717–724.

29. Rebai, M., Kharrat, N., Ayadi, I., and Rebai, A., Haplotype structure of five SNPs within the ACE gene in the Tunisian population, Ann. Hum. Biol., 2006, vol. 33, no. 3, pp. 319–329.

30. Boright, A.P., Paterson, A.D., Mirea, L., Bull, S.B., Mowjoodi, A., Scherer, S.W., and Zinman, B., Genetic variation at the ACE gene is associated with persistent microalbuminuria and severe nephropathy in type 1 diabetes: the DCCT/EDIC Genetics Study, Diabetes, 2005, vol. 54, no. 4, pp. 1238–1244.

31. Kharrat, N., Abdelmouleh, W., Abdelhedi, R., AlFadhli, S., and Rebai, A., The linkage disequilibrium pattern of the Angiotensin Converting Enzyme gene in Arabic and Asian population groups, Ann. Hum. Biol., 2012, vol. 39, no. 6, pp. 538–540.

32. Al-Rubeaan, K., Siddiqui, K., Saeb, A.T., Nazir, N., Al-Naqeb, D., and Al-Qasim, S., ACE I/D and MTHFR C677T polymorphisms are significantly associated with type 2 diabetes in Arab ethnicity: a meta-analysis, Gene, 2013, vol. 520, no. 2, pp. 166–177.

33. American Diabetes Association. Standards of medical care in diabetes, Diabetes Care, 2014, vol. 37, no. 114–180.

34. Lee, S.Y. and Choi, M.E., Urinary biomarkers for early diabetic nephropathy: beyond albuminuria, Pediatr. Nephrol., 2015, vol. 30, no. 7, pp. 1063–1075.

35. Currie, G., McKay, G., and Delles, C., Biomarkers in diabetic nephropathy: present and future, World J. Diabetes, 2014, vol. 5, no. 6, p. 763.

36. Glassock, R.J., Is the presence of microalbuminuria a relevant marker of kidney disease?, Curr. Hypertens. Rep., 2010, vol. 12, no. 5, pp. 364–368.

37. Al-Rubeaan, K., Siddiqui, K., Al-Ghonaim, M.A., Youssef, A.M., Al-Sharqawi, A.H., and AlNaqeb, D., Assessment of the diagnostic value of different biomarkers in relation to various stages of diabetic nephropathy in type 2 diabetic patients, Sci. Rep., 2017, vol. 7, no. 1, p. 2684.