Цитологія і генетика 2019, том 53, № 2, 74-75
Cytology and Genetics 2019, том 53, № 2, 162–168, doi: https://www.doi.org/10.3103/S0095452719020105

Expression profiles of a tung tree phosphate transporter cdna and structural characteristics of the encoded protein

Zhou J., Yuan J., Long H., Tan X.

The Key Lab of Non­wood Forest Nurturing and Protection of the National Ministry of Education, Central South University of Forestry and Technology, Changsha 410004

РЕЗЮМЕ. Рослинні фосфатні транспортери опосередковують отримання, транслокацію та переробку фосфатів. Було клоновано кДНК Vernicia fordii, що кодує фосфатний транспортер, за допомогою полімеразної ланцюгової реакції з використанням зворотної транскрипції (ПЛР-ЗТ) та швидкої ампліфікації кінців кДНК. Отримана кДНК, за назвою фосфатний транспортер-1;1 Vernicia fordii (VfPht1;1), кодує передбачений білок, що складається з 53 амінокислот. Цей передбачений білок, що містить 12 трансмембранних доменів, найбільше подібний (89,9 %) до передбаченого білка Ricinus communis. Кількісні дані ПЛР у реальному часі продемонстрували найвищу експресію VfPht1;1 у зрілих черешках листків. Зафіксовано також високий рівень експресії у насінні, зібраному у червні, коли зростаючі фрукти потребують великої кількості фосфатів. Згідно з нашими спостереженнями VfPht1;1 може мати різні функції стосовно споживання та транслокації фосфатів.

Ключові слова: Vernicia fordii; phosphate transporter; VfPT1;1; gene cloning; gene expression

Цитологія і генетика
2019, том 53, № 2, 74-75

Current Issue
Cytology and Genetics
2019, том 53, № 2, 162–168,
doi: 10.3103/S0095452719020105

Повний текст та додаткові матеріали

Цитована література

1. Li, P., Zhang, X., Chen, Y., Lu, G., Zhou, G., and Wang, Y., Genetic diversity and germplasm resource research on tung tree (Vernicia fordii) cultivars, investigated by inter-simple sequence repeats, Afric. J. Biotech., vol. 7, no. 8, pp. 1054–1059.

2. He, G., Zhang, J., Hu, X., and Wu, J., Effect of aluminum toxicity and phosphorus deficiency on the growth and photosynthesis of oil tea (Camellia oleifera Abel.) seedlings in acidic red soils, Acta Physiol. Plant., 2010, vol. 33, no. 4, pp. 1285–1292. https://doi.org/10.1007/s11738-010-0659-7

3. Holford, I., Soil phosphorus: its measurement and its uptake by plants, Austral. J. Soil Res., 1997, vol. 35, pp. 227–239.

4. Hu, H.Q., Tan, C.Y., Tan, C., Cai, Ch., He, J., and Li, X., Availability and residual effects of phosphate rocks and inorganic P fractionation in a red soil of Central China, Nutr. Cycl. Agroecosyst., 2001, vol. 59, pp. 251–258.

5. Rae, A.L., Cybinski, D.H., Jarmey, J.M., and Smith, F.W., Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family, Plant Mol. Biol., 2003, vol. 53, nos. 1–2, pp. 27–36.

6. Ai, P., Sun, S., Zhao, J., Fan, X., Xin, W., Guo, Q., Yu, L., Shen, Q., Wu, P., Miller, A.J., and Xu, G., Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation, Plant J., 2009, vol. 57, no. 5, pp. 798–809. https://doi.org/10.1111/j.1365-313X.2008.03726.x

7. Shen, J.B., Yuan, L.X., Zhang, J.L., Li, H., Bai, Z., Chen, X., Zhang, W., and Zhang, F., Phosphorus dynamics: from soil to plant, Plant Physiol., 2011, vol. 156, no. 3, pp. 997–1005. https://doi.org/10.1104/pp.111.175232

8. Wu, Z.Y., Zhao, J.M., Gao, R.F., Hu, G., Gai, J., Xu, G., and Xing, H., Molecular cloning, characterization and expression analysis of two members of the Pht1 family of phosphate transporters in Glycine max, PLoS One, 2011, vol. 6, no. 6, pp. 1–12. doi.org/ https://doi.org/10.1371/journal.pone.0019752

9. Shin, H., Shin, H.S., Dewbre, G.R., and Harrison, M.J., Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low-and high-phosphate environments, Plant J., 2004, vol. 39, no. 4, pp. 629–642. https://doi.org/10.1111/j.1365-313X.2004.02161.x

10. Misson, J., Thibaud, M.C., Bechtold, N., Raghothama, K., and Nussaume, L., Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants, Plant Mol. Biol., 2004, vol. 55, no. 5, pp. 727–741.

11. Yang, G.Z., Ding, G.D., Shi, L., and Xu, F., Characterization of phosphorus starvation-induced gene BnSPX3 in Brassica napus, Plant Soil, 2012, vol. 350, nos. 1–2, pp. 339–351. https://doi.org/10.1007/s11104-011-0913-9

12. Wu, P., Shou, H.X., Xu, G.H., and Lian, X., Improvement of phosphorus efficiency in riceon the basis of understanding phosphate signaling and homeostasis, Curr. Opin. Plant Biol., 2013, vol. 16, no. 2, pp. 205–212. https://doi.org/10.1016/j.pbi.2013.03.002

13. Shockey, J.M., Gidda, S.K., Chapital, D.C., Kuan, J.C., Dhanoa, P.K., Bland, J.M., Rothstein, S.J., Mullen, R.T., and Dyer, J.M., Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum, Plant Cell, 2006, vol. 18, no. 9, pp. 2294–2313. https://doi.org/10.1105/tpc.106.043695

14. Cao, H., Chapital, D.C., Shockey, J.M., and Klasson, K.T., Expression of tung tree diacylglycerol acyltransferase 1 in E. coli, BMC Biotechnol., 2011, vol. 11, pp. 1–13. https://doi.org/10.1186/1472-6750-11-73

15. Han, X., Lu, M., Chen, Y., Zhan, Z., Cui, Q., and Wang, Y., Selection of reliable reference genes for gene expression studies using real-time PCR in tung tree during seed development, PLoS One, 2012, vol. 7, no. 8. https://doi.org/10.1371/journal.pone.0043084

16. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method, Methods, 2001, vol. 25, pp. 402–408.

17. Loth-Peereda, V., Orsini, E., Courty, P.E., Lota, F., Kohler, A., Diss, L., Blaudez, D., Chalot, M., Nehls, U., Bucher, M., and Martin, F., Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa, Plant Physiol., 2013, vol. 156, no. 4, pp. 2141–2154. https://doi.org/10.1104/pp.111.180646

18. Pao, S.S., Paulsen, I.T., and Saier, M.H., Major facilitator superfamily, Microbiol. Mol. Biol. Rev., 1998, vol. 62, no. 1, pp. 1–34.

19. Seo, H.M., Jung, Y., Song, S., Kim, Y., Kwon, T., Kim, D.H., Jeung, S.J., Yi, Y.B., Yi, G., Nam, M.H., and Nam, J., Increased expression of OsPT1, a high-affinity phosphate transporter, enhances phosphate acquisition in rice, Biotechnol. Lett., 2008, vol. 30, no. 10, pp. 1833–1838. https://doi.org/10.1007/s10529-008-9757-7

20. Hinsinger, Ph., Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review, Plant Soil, 2001, vol. 237, no. 2, pp. 173–195. https://doi.org/10.1023/A:1013351617532