TSitologiya i Genetika 2020, vol. 54, no. 2, 77-79
Cytology and Genetics 2020, vol. 54, no. 2, 154–164, doi: https://www.doi.org/10.3103/S0095452720020048

Effect of MI gene and nematode resistance on tomato genotypes using molecular and screening assay

Bozbuga R., Dasgan H.Y., Akhoundnejad Y., Imren M., Günay O.C., Toktay H.

  1. Nematology Lab, Biological Control Research Institute, Adana, Turkey
  2. Horticulture Department, Faculty of Agriculture, Çukurova University, Sarıçam, Adana, Turkey
  3. Abant Izzet Baysal University, Faculty of Agriculture and Natural Sciences, Plant Protection Department, 14280 Gölköy, Bolu,Turkey
  4. Faculty of Medicine, Karabuk University, Karabuk, Turkey
  5. Ömer Halisdemir University, Faculty of Agriculture and Technologies, Department of plant Production and Technologies, Niğde, Turkey

The Mi gene is known to involve in the resistance response to some Root knot nematodes, Meloidogyne spp. in tomato plants Lycopersicon esculentum. Root knot nematodes cause significant damages to almost all crops in the world. Among Meloidogyne species, Meloidogyne incognita is one of the most damages species causing a vast amount of crop loss including tomato plants. The resistance gene may be found in some tomato genotypes or cultivars. Determining the resistance gene, Mi, in tomato cultivars is very important to control root knot nematodes. For this purpose, this study was conducted in 99 tomato genotypes that were screened for resistance against Meloidogyne incognita in molecular and screening assays. Results revealed that Mi gene was only determined in one genotype (Tom113). The result of the screening assay indicated that one of the genotypes (Tom113) showed an immune reaction against the nematode; two genotypes (Tom146, Tom141) were found intermediate; 17 genotypes moderately susceptible, 43 genotypes susceptible and 36 genotypes found highly susceptible. Results of the screening assay confirmed the presence of Mi gene in a tomato genotype, which accompanied with a decreased ability for the nematode in causing the infection. Immune and some promising genotypes are thought as important genetic tools for breeding studies for future works.

Keywords: gene, tomato genotype, Meloidogyne incognita

TSitologiya i Genetika
2020, vol. 54, no. 2, 77-79

Current Issue
Cytology and Genetics
2020, vol. 54, no. 2, 154–164,
doi: 10.3103/S0095452720020048

Full text and supplemented materials

References

1. Toktay, H., Bozbuga, R., İmren, M., Kasapoğlu, E.B., and Elekcioğlu, İ.H., The effect of different applications on hatching of Meloidogyne incognita (Kofoid & White, 1919) and Meloidogyne hapla (Chitwood, 1949) (Nemata: Meloidogynidae) and survivability of second stage juveniles without feeding, Turk. J. Agric. Nat. Sci., 2014, vol. 1, no. 4, pp. 509–515.

2. Toktay, H., Imren, M., and Bozbuga, R., Alternative strategies to control root-knot nematodes (Meloidogyne spp.) with different irrigation systems in pepper greenhouses, Bitki Koruma Bülteni, 2015, vol. 55, no. 3, pp. 215–224.

3. Bozbuga, R., Daşgan, H.Y., Akhoundnejad, Y., Imren, M., Toktay, H., and Kasapoğlu, E.B., Identification of common bean (Phaseolus vulgaris) genotypes having resistance against root knot nematode Meloidogyne incognita,Legume Res., 2015, vol. 38, no. 5, pp. 669–674. https://doi.org/10.18805/lr.v38i5.5948

4. Bozbuga, R., Imren, M., Kasapoğlu, E.B., Toktay, H., and Elekcioğlu, I.H., Determining the optimal Meloidogyne incognita inoculum level, inoculation time, pathogenicity and gall development on tomato roots for resistance experiments in breeding programs, Vegetos, 2015, vol. 28, pp. 70–75. https://doi.org/10.5958/2229-4473.2015.00010.5

5. Elekçioğlu, N.Z., Uygun, N., and Bozbuga, R., Status of Mediterranean fruit fly Ceratitis capitata Wiedemann (Diptera: Tephritidae) and its control in Turkey, Control Citrus Fruits Crops IOBC/wprs Bull., 2008, vol. 38, pp. 136–141.

6. Bozbuga, R. and Ulusoy, M.R., Adana ilinde zeytin sineği, Bactrocera oleae gmel. (Diptera: Tephritidae)’nin popülasyon takibi ve vuruk oranlarının tespiti, Fen ve Mühendislik Bilimleri Dergisi, 2008, vol. 17, no. 8, pp. 41–50.

7. Bozbuga, R. and Elekçioğlu, N.Z., Pest and natural enemies determined in olive orchards in Turkey, Turk.J. Sci. Rev., 2008, vol. 1, no. 1, pp. 87–97.

8. Bozbuga R., Elekçioğlu N.Z., Threat of terrestrial gastropods distributing at olive and citrus orchards in Adana province, Turkey, Bulg. J. Agric. Sci. 2008, vol. 14, no. 4, pp. 445–448.

9. İmren, M., Toktay, H., Bozbuğa, R., Orakci, G.E., Dababat, A., and Elekcioğlu, I.H., Uluslararası bazı ekmeklik buğday çeşitlerinin Tahıl kist nematodları, Heterodera avenae (Wollenweber, 1924), Heterodera filipjevi (Madzhidov, 1981) Stelter ve Heterodera latipons (Franklin, 1969) karşı genetik dayanıklılığının belirlenmesi. Türk. Entomol. Dergisi. 2014, vol. 37, no. 3, pp. 277–282.

10. Bozbuga, R., Monitoring of olive fruit fly Bactrocera oleae Gmel. (Diptera: Tephritidae) population and determination of its parasitoits in Adana, Msc Thesis, Adana: Çukurova Univ., 2007.

11. TUIK, Turkish statistical Institute. 2016.

12. Jones, J.T., Haegeman, A., Danchin, E.G.J., Gaur, H.S., Helder, J., Jones, M.G.K., Kikuchi, T., Manzanilla-Lopez, R., Palomares-Rius, J.E., Wesemael, W.M.L., and Perry, R.N., Top 10 plant-parasitic nematodes in molecular plant pathology, Mol. Plant Pathol., 2013, vol. 14, no. 9, pp. 946–961. https://doi.org/10.1111/mpp.12057

13. Karsen, G. and Moens, M., Root knot nematodes, in Plant Nematology, Perry, R.N. and Moens, M., Eds., Oxfordshire: CABI Publ., 2006.

14. Favery, B., Quentin, M., Jaubert-Possamai, S., and Abad, P., Gall-forming root-knot nematodes hijack key plant cellular functions to induce multinucleate and hypertrophied feeding cells, J. Ins. Physiol., 2016, vol. 84, pp. 60–69. https://doi.org/10.1016/j.jinsphys.2015.07.013

15. Bird, A.F., The attractiveness of roots to the plant-parasitic nematodes Meloidogyne javanica and M. hapla,Nematologica, 1959, vol. 4, no. 4, pp. 322–335.

16. Rasmann, S., Ali, J.G., Helder, J., and van der Putten, W.H., Ecology and evolution of soil nematode chemotaxis, J. Chem. Ecol., 2012, vol. 38, no. 6, pp. 615–628.https://doi.org/10.1007/s10886-012-0118-6

17. Bozbuga, R., Characterisation of cell walls at the feeding site of Meloidogyne incognita, PhD Thesis, Leeds: Univ. of Leeds., 2017.

18. Ozarslandan, A., Identification of Meloidogyne species collected from different parts of Turkey and determination of virulence of some root knot (Meloidogyne spp.) populations, PhD Thesis, Adana: Cukurova Univ., 2009.

19. Netscher, C. and Sikora, R.A., Nematode parasites on vegetables, in Plant Parasitic Nematodes in Suptropical and Tropical Agriculture, Luc, M., Sikora, R.A., and Bridge, J., Eds., CABI Int., 1990, pp. 231–283.

20. Bartlem, D.G., Jones, M.G., and Hammes, U.Z., Vascularization and nutrient delivery at root-knot nematode feeding sites in host roots, J. Exp. Bot., 2014, vol. 65, no. 7, pp. 1789–1798. https://doi.org/10.1093/jxb/ert415

21. Williamson, W.M. and Roberts, A.P., Mechanisms and genetics of resistance, in Root Knot Nematodes, Perry, R.N., Moens, M., and Star, J.L., Eds., Oxfordshire: CABI Int., 2009, pp. 301–319.

22. Williamson, V.M., Root-knot nematode resistance genes in tomato and their potential for future use, Ann. Rev. Phytopathol., 1998, vol. 36, pp. 277–293. https://doi.org/10.1146/annurev.phyto.36.1.277

23. Elling, A.A., Major emerging problems with minor Meloidogyne species, Pyhtopathology, 2013, vol. 103, no. 11, pp. 1092–1102. https://doi.org/10.1094/PHYTO-01-13-0019-RVW

24. Mullin, B.A., Abawi, G.S., Pastor-Corrales, M.A., and Kornegay, J.L., Root knot nematodes associated with beans in Colombia and Peru and related yield loss, Plant Dis., 1991, vol. 75, no. 12, pp. 1208–1211. https://doi.org/10.1094/PD-75-1208

25. Mullin, B.A., Abawi, G.S., Pastor-Corrales, M.A., and Kornegay, J.L., Reactions of selected bean pure lines and accessions to Meloidogyne species, Plant Dis., 1991, vol. 75, no. 12, pp. 1212–1216. https://doi.org/10.1094/PD-75-1212

26. Chen, R.G., Zhang, L.Y., Zhang, J.H., Zhang, W., Wang, X., Ouyang, B., Li, H.X., and Ye, Z.B., Functional characterization of Mi, a root-knot nematode resistance gene from tomato (Lycopersicon esculentum L.), J. Integr. Plant Biol., 2006, vol. 48, no. 12, pp. 1458–1465. https://doi.org/10.1111/j.1744-7909.2006.00354.x

27. Liharska, T.B., Koornneef, M., van Wordragen, M., van Kammen, A., and Zabel, P., Tomato chromosome 6: effect of alien chromosomal segments on recombinant frequencies, Genome, 1996, vol. 39, no. 3, pp. 485–491. https://doi.org/10.1139/g96-062

28. Nombela, G.1., Williamson, V.M., and Muñiz, M., The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci,Mol. Plant Microbe Interact., 2003, vol. 16, no. 7, pp. 645–649. https://doi.org/10.1094/MPMI.2003.16.7.645

29. Vos, V., Simons, G., Jesse, T., Wijbrandi, J., Heinen, J., Hogers, R., Frijters, A., Groenendijk, J., Diergaarde, P., Reijans, M., Fierens-Onstenk, J., Both, M., Peleman, J., Liharska, T., Hontelez, J., and Zabeau, M., The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids, Nat. Biotechnol., 1998, vol. 16, no. 13, pp. 1365–1369. https://doi.org/10.1038/4350

30. Marques de Carvalho, L., Benda, N.D., Vaughan, M.M., Cabrera, A.R., Hung, K., Cox, T., Abdo, Z., Allen, L.H., and Teal, P.E., Mi-1-mediated nematode resistance in tomatoes is broken by short-term heat stress but recovers over time, J. Nematol., 2015, vol. 47, no. 2, pp. 133–140.

31. Davis, E.L., Hussey, R.S., and Baum, T.J., Getting the roots of parasitism by nematodes, Trends Parasitol., 2004, vol. 20, no. 3, pp. 134–141. https://doi.org/10.1016/j.pt.2004.01.005

32. Bird, D.M., Manipulation of host gene expression by root knot nematodes, J. Parasitol., 1996, vol. 82, no. 6, pp. 881–888. https://doi.org/10.2307/3284193

33. Fortnum, B.A., Kasperbauer, M.J., Hunt, P.G., and Bridges, W.C., Biomass partiotioning in tomato plants infected with Meloidogyne incognita,J. Nematol., 1991, vol. 23, no. 3, pp. 291–297.