TSitologiya i Genetika 2019, vol. 53, no. 1, 59-70
Cytology and Genetics 2019, vol. 53, no. 1, 49–59, doi: https://www.doi.org/10.3103/S0095452719010092

Hemiclone diversity in the hybrid form Pelophylax esculentus-ridibundus (Amphibia, Ranidae) from the Prypyat, Dnestr and Southern Boug rivers basins

Morozov-Leonov S.Yu.

SUMMARY. The hemiclonal structure of the Pelophylax esculentus-ridibundus hybrid form from the Pripyat, Dniester and Southern Boug rivers basins is analyzed. The inter-basin and inter-population differences in the inherited genome variation level are demonstrated. The genetic diversity level of the P. esculentus-ridibundus inherited genome in the Pripyat basin is significantly lower than in the other two basins. In this case only in the Pripyat basin monoclonal populations of this hybrid form have been identified. There were no significant differences in the genetic variability level of this hybrid form between the populations of the Dniester and Southern Boug basins. The relationship between the variability level of the inherited genome of the hybrid form and the potentially possible multiple hybridization of parental species is analyzed.

Keywords: Pelophylax, hybrid form, hemiclone diversit

TSitologiya i Genetika
2019, vol. 53, no. 1, 59-70

Current Issue
Cytology and Genetics
2019, vol. 53, no. 1, 49–59,
doi: 10.3103/S0095452719010092

Full text and supplemented materials

Free full text: PDF  

References

1. Gutekunst, J., Andriantsoa, R., Falckenhayn, C., Hanna, K., Stein, W., Rasamy, J., and Lyko, F., Clonal genome evolution and rapid invasive spread of the marbled crayfish, Nat. Ecol. Evol., 2018, vol. 2, pp. 567–573. https://doi.org/10.1038/s41559-018-0467-9

2. Haileselasie, T.H., Mergeay, J., Weider, L.J., Sommaruga, R., Davidson, T.A., Meerhoff, M., Arndt, H., Jürgens, K., Jeppesen, E., and De Meester, L., Environment not dispersal limitation drives clonal composition of Arctic Daphnia in a recently deglaciated area, Mol. Ecol., 2016, vol. 25, no. 23, pp. 5830–5842. https://doi.org/10.1111/mec.13843

3. Hasegawa, E., Watanabe, S., Murakami, Y., and Ito, F. Adaptive phenotypic variation among clonal ant workers, Roy. Soc. Open Sci., 2018, vol. 5, no. 2, pp. 170816–170837. https://doi.org/10.1098/rsos.170816

4. Käch, H., Mathé-Hubert, H., Dennis, A.B., and Vorburger, C., Rapid evolution of symbiont-mediated resistance compromises biological control of aphids by parasitoids, Evol. Appl., 2018, vol. 11, no. 2, pp. 220–230. https://doi.org/10.1111/eva.12532

5. Elzinga, J.A., Jokela, J., and Shama, L.N.S., Large variation in mitochondrial DNA of sexual and parthenogenetic Dahlica triquetrella (Lepidoptera: Psychidae) shows multiple origins of parthenogenesis, BMC Evol. Biol., 2013, no. 13, pp. 90–98. https://doi.org/10.1186/1471-2148-13-90

6. Bonandin, L., Scavariello, C., Mingazzini, V., Luchetti, A., and Mantovani, B., Obligatory parthenogenesis and TE load: Bacillus stick insects and the R2 non-LTR retrotransposon, Insect Sci., 2017, vol. 24, no. 3, pp. 409–417. https://doi.org/10.1111/1744-7917

7. Dagan, Y., Kosman, E., and Ben-Ami, F., Cost of resistance to trematodes in freshwater snail populations with low clonal diversity, BMC Ecol., 2017, no. 17, pp. 40–47. https://doi.org/10.1186/s12898-017-0152-x

8. Gibson, A.K., Delph, L.F., and Lively, C.M., The two-fold cost of sex: Experimental evidence from a natural system, Evol. Lett., 2017, vol. 1, no. 1, pp. 6–15. https://doi.org/10.1002/evl3.1

9. Cole, C.J., Taylor, H.L., Neaves, W.B., Baumann, D.P., Newton, A., Schnittker, R., and Baumann, P., The second known tetraploid species of parthenogenetic tetrapod (Reptilia: Squamata: Teiidae): description, reproduction, comparisons with ancestral taxa, and origins of multiple clones, Bull. Mus. Comp. Zool., 2017, vol. 161, no. 8, pp. 285–321. https://doi.org/10.3099/MCZ37.1

10. Manríquez-Morán, N.L., Cruz, F.R., and Murphy, R.W., Genetic variation and origin of parthenogenesis in the Aspidoscelis cozumela complex: evidence from mitochondrial genes, Zool. Sci., 2014, vol. 31, no. 1, pp. 14–19. https://doi.org/10.2108/zsj.31.14

11. Vergun, A.A., Martirosyan, I.A., Semyenova, S.K., Omelchenko, A.V., Petrosyan, V.G., Lazebny, O.E., Tokarskaya, O.N., Korchagin, V.I., and Ryskov, A.P., Clonal diversity and clone formation in the parthenogenetic Caucasian rock lizard Darevskia dahli, PLoS One, 2014, vol. 9, no. 3, e91674. https://doi.org/10.1371/journal.pone.0091674

12. Ryskov, A.P., Osipov, F.A., Omelchenko, A.V., Semyenova, S.K., Girnyk, A.E., Korchagin, V.I., Vergun, A.A., and Murphy, R.W., The origin of multiple clones in the parthenogenetic lizard species Darevskia rostombekowi, PLoS One, 2017, vol. 12, no. 9, e0185161. https://doi.org/10.1371/journal.pone.0185161

13. Morgado-Santos, M., Carona, S., Vicente, L., and Collares-Pereira, M.J., First empirical evidence of naturally occurring androgenesis in vertebrates, R. Soc. Open Sci., 2017, no. 4, pp. 170200–170207. https://doi.org/10.1098/rsos.170200

14. Zhang, J., Sun, M., Zhou, L., Li, Z., Liu, Z., Li, X.Y., Liu, X.L., Liu, W., and Gui, J.F., Meiosis completion and various sperm responses lead to unisexual and sexual reproduction modes in one clone of polyploid Carassius gibelio, Sci. Rep., 2015, no. 5, pp. 10898. https://doi.org/10.1038/srep10898

15. Warren, W.C., García-Pérez, R., Xu, S., Lampert, K.P., Chalopin, D., Stöck, M., Loewe, L., Lu, Y., Kuderna, L., Minx, P., Montague, M.J., Tomlinson, C., Hillier, L.W., Murphy, D.N., Wang, J., Wang, Z., Garcia, C.M., Thomas, G.C.W., Volff, J.N., Farias, F., Aken, B., Walter, R.B., Pruitt, K.D., Marques-Bonet, T., Hahn, M.W., Kneitz, S., Lynch, M., and Schartl, M., Clonal polymorphism and high heterozygosity in the celibate genome of the Amazon molly, Nat. Ecol. Evol., 2018, vol. 2, no. 4, pp. 669–679. https://doi.org/10.1038/s41559-018-0473-y

16. Egan, A.N., Vatanparast, M., and Cagle, W., Parsing polyphyletic Pueraria: Delimiting distinct evolutionary lineages through phylogeny, Mol. Phylogenet. Evol., 2016, no. 104, pp. 44–59. https://doi.org/10.1016/j.ympev.2016.08.001

17. Pagano, A., Lesbarreres, D., Crivelli, A., Veith, M., Lode, T., and Schmeller, D.S., Geographical and ecological distributions of frog hemiclones suggest occurrence of both “General Purpose Genotype” and “Frozen Niche Variation” clones, Zool. Syst. Evol. Res., 2008, vol. 46, no. 2, pp. 162–168. https://doi.org/10.1111/j.1439-0469.2007.00439.x

18. Hotz, H., Guex, G.-D., Beerli, P., Semlitsch, R.D., and Pruvost, N.B.M., Hemiclone diversity in the hybridogenetic frog Rana esculenta outside the area of clone formation: the view from protein electrophoresis, J. Zool. Syst. Evol. Res., 2008, vol. 46, no. 1, pp. 56–62. https://doi.org/10.1111/j.1439-0469.2007.00430.x

19. Vorburger, Ch. Non-hybrid offspring from matings between hemiclonal hybrid waterfrogs suggest occasional recombination between clonal genomes, Ecol. Lett., 2001, no. 4, pp. 628–636. https://doi.org/10.1046/j.1461-0248.2001.00272.x

20. Vorburger, Ch., Fixation of deleterious mutations in clonal lineages: evidence from hybridogenetic frogs, Evolution, 2001, vol. 55, no. 11, pp. 2319–2332. https://doi.org/10.1111/j.0014-3820.2001.tb00745.x

21. Morozov-Leonov, S.Yu., Hemiclone diversity in the hybrid form Pelophylax esculentus-ridibundus (Amphibia, Ranidae) from the Tisa River drainage, Cytol. Genet., 2017, vol. 51, no. 6, pp. 69–77. https://doi.org/10.3103/S0095452717060093

22. Mezhzherin, S.V. and Peskov, V.N., Biochemical variability and genetic differentiation of the marsh frog Rana ridibunda Pall. populations, Cytol. Genet., 1992, vol. 26, no. 1, pp. 43–48.

23. Parker, E.D., Ecological implications of clonal diversity in parthenogenetic morphospecies, Am. Zool., 1979, no. 19, pp. 753–762.

24. Nei, M. and Roychoudhury, A.K., Sampling variances of heterozygosity and genetic distance, Genetics, 1974, vol. 76, no. 2, pp. 379–390.

25. Dorken, M.E. and Eckert, C.G., Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae), J. Ecol., 2001, no. 89, pp. 339–350. https://doi.org/10.1046/j.1365-2745.2001.00558.x

26. Quattro, J.M., Avise, J.C., and Vrijenhoek, R.C., Mode of origin and sources of genotypic diversity in triploid gynogenetic fish clones (Poeciliopsis: Poeciliidae), Genetics, 1992, no. 130, pp. 621–628.

27. Nibouche, S., Fartek, B., Mississipi, S., Delatte, H., Reynaud, B., and Costet, L., Low genetic diversity in Melanaphis sacchari aphid populations at the worldwide scale, PLoS One, 2014, vol. 9, no. 8, e106067. https://doi.org/10.1371/journal.pone.0106067

28. Wang, X.Y., Yang, X.M., Lu, B., Zhou, L.H., and Wu, K.M., Genetic variation and phylogeographic structure of the cotton aphid, Aphis gossypii, based on mitochondrial DNA and microsatellite markers, Sci. Rep., 2017, no. 7, pp. 1920–1993. https://doi.org/10.1038/s41598-017-02105-4

29. Zhao, C., Yang, X.M., Tang, S.H., Xu, P.J., Bian, W.J., Wang, X.F., Wang, X.W., and Ren, G.W., Population genetic structure of Myzus persicae nicotianae (Hemiptera: Aphididae) in China by microsatellite analysis, Genet. Mol. Res., 2015, vol. 14, no. 4, pp. 17159–17169. https://doi.org/10.4238/2015

30. Fisher, R.A., The Genetical Theory of Natural Selection, Oxford: Clarendon Press, 1930.

31. Morozov-Leonov, S.Yu., Mezhzherin, S.V., Nekrasova, O.D., Kurtyak, F.F., Shabanov, D.A., and Korshunov, A.V., Inheritance of parental genomes by a hybrid form Rana “esculenta” (Amphibia, Ranidae), Russ. J. Genet., 2009, vol. 45, no. 4, pp. 488–495. https://doi.org/10.1134/S1022795409040061

32. Eiler, A., Löfgren, A., Hjerne, O., Nordén, S., and Saetre, P., Environmental DNA (eDNA) detects the pool frog (Pelophylax lessonae) at times when traditional monitoring methods are insensitive, Sci. Rep., 2018, no. 8, pp. 5452–5460. https://doi.org/10.1038/s41598-018-23740-5