TSitologiya i Genetika 2018, vol. 52, no. 6, 61-70
Cytology and Genetics 2018, vol. 52, no. 6, 440–447, doi: https://www.doi.org/10.3103/S0095452718060063

Studying recobination between the 1RS arms from the rye Petkus and Insave involved in the 1BL.1RS and 1AL.1RS translocations using storage protein loci as genetic markers

Kozub N., Sozinov I., Karelov A., Bidnyk H., Demianova N., Sozinova O., Blume Ya., Sozinov A.

SUMMARY. A population of F6 recombinant inbred lines from the cross between winter common wheat lines with the wheat-rye translocations 1BL.1RS (of the Kavkaz type) and 1АL.1RS (of the Amigo type) B-16 × 7086 AR was produced. Using the storage protein loci Gli-R1, Gli-A1, and Gli-B1 as genetic markers, lines with recombinant 1RS (12 %) were identified and the frequency of recombination between 1RS involved in different translocations was determined as 7 %. 1RS from Amigo was demonstrated to carry a gene encoding the secalin ‘a’, which can be identified on SDS electrophoregrams under the y-subunit encoded by the Glu-D1 locus. The secalin ‘a’ was also revealed in the cultivar MV Táltos, which was shown to carry the 1BL.1RS translocation with secalin alleles of the Amigo type. The gene encoding the secalin ‘a’ was found to be allelic to the gene Sec-Nx from the rye Voronezhske SGI. The frequency of recombination between the loci Gli-R1 and Sec-N depends on the nature of the material analyzed and amounts about 10 % (the genetic distance of 10 cM) in the cross MV Táltos × CWX (the lines with different 1BL.1RS translocations). Such a distance suggests that important disease and pest resistance genes, in particular stem rust resistance genes, are within the region flanked by these loci. Because of this the secalin loci are convenient for primary screening for recombinant 1RS arms with new combinations of disease and pest resistance genes.

Keywords: Triticum aestivum L., recombinant inbred lines, 1BL.1RS, 1АL.1RS, secalin loci, recombination, stem rust genes

TSitologiya i Genetika
2018, vol. 52, no. 6, 61-70

Current Issue
Cytology and Genetics
2018, vol. 52, no. 6, 440–447,
doi: 10.3103/S0095452718060063

Full text and supplemented materials

References

1. Schlegel, R., Current list of wheats with rye and alien introgression V05-16, 1–18, 2016. http://www.ryegene-map.de/rye-introgression.

2. Rabinovich, S.V., Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L., Euphytica, 1998, vol. 100, nos. 1–3, pp. 323–340.

3. Lerner, S.E., Kolman, M.A., and Rogers, W.J., Quality and endosperm storage protein variation in Argentinian grown bread wheat. I Allelic diversity and discrimination between cultivars, J. Cereal Sci., 2009, vol. 49, no. 3, pp. 337–345. doi 10.1016/j.jcs.2008.04.003

4. Purnhauser, L., Bona, L., and Lang, L., Identification of Sr31 and Sr36 stem rust resistance genes in wheat cultivars registered in Hungary, Cer. Res. Comm., 2011, vol. 39, no. 1, pp. 53–66. doi.org/10.1556/CRC.39.2011.1.6

5. Zhang, L.Y., Liu, D.C., Guo, X.L., Yang, W.L., Sun, J.Z., Wang, D.W., Sourdille, P., and Zhang, A.M., Investigation of genetic diversity and population structure of common wheat cultivars in northern China using DArT markers, BMC Genetics, 2011. doi 10.1186/1471-2156-12-42

6. Kozub, N.A., Sozinov, I.A., Karelov, A.V., Blume, Ya.B., and Sozinov, A.A., Diversity of Ukrainian winter common wheat varieties with respect to storage protein loci and molecular markers for disease resistance genes, Cytol. Genet., 2017, vol. 51, no. 2, pp. 117–129. doi 10.3103/S0095452717020050

7. Sebesta, E.E. and Wood, E.A., ·Porter D.R., Webster J.A., Smith E.L. Registration of Gaucho greenbug-resistant triticale germplasm, Crop Sci., 1994, vol. 34, p. 1428.

8. McIntosh, R.A., Catalogue of Gene Symbols. Gene Catalogue, 2013. https://shigen.nig.ac.jp/wheat/komugi/ genes/macgene/2013/GeneSymbol.pdf.

9. Pretorius, Z.A., Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda, Plant Dis., 2000, vol. 84, no. 2, p. 203. doi.org/10.1094/PDIS.2000.84.2.203B

10. Singh, R.P., Hodson, D.P., Jin, Y., Lagudah, E.S., Ayliffe, M.A., Bhavani, S., Rouse, M.N., Pretorius, Z.A., Szabo, L.J., Huerta-Espino, J., Basnet, B.R., Lan, C., and Hovmoller, M.S., Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control, Phytopathology, 2015, vol. 105, no. 7, pp. 872–884. doi 10.1094/PHYTO-01-15-0030-FI

11. Olivera, P.D., Jin, Y., Rouse, M., Badebo, A., Fetch, T., Jr., Singh, R.P., and Yahyaoui, A., Races of Puccinia graminis f. sp. tritici with combined virulence to Sr13 and Sr9e in a field stem rust screening nursery in Ethiopia, Plant Dis., 2012, vol. 96, no. 5, pp. 623–628. doi.org/10.1094/PDIS-09-11-0793

12. Mago, R., Zhang, P., Vautrin, S., Šimková, H., Bansal, U., Luo, M.C., Rouse, M., Karaoglu, H., Periyannan, S., Kolmer, J., Jin, Y., Ayliffe, M.A., Bariana, H., Park, R.F., McIntosh, R., Doležel, J., Bergès, H., Spielmeyer, W., Lagudah, E.S., Ellis, J.G., and Dodds, P.N., The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus, Nat. Plants, 2015, vol. 1, p. 15186. doi 10.1038/nplants.2015.186

13. Bhattacharya, S., Deadly new wheat disease threatens Europe’s crops, Nature, vol. 542, no. 7640, pp. 145–146. doi 10.1038/nature.2017.21424

14. Zhao, C., Cui, F., Wang, X., Shan, S., Li, X., Bao, Y., and Wang, H., Effects of 1BL/1RS translocation in wheat on agronomic performance and quality characteristics, Field Crops Res., 2012, vol. 127, pp. 79–84. doi 10.1016/j.fcr.2011.11.008

15. Ehdaie, B., Whitkus, R.W., and Waines, J.G., Root biomass, water-use efficiency, and performance of wheat rye translocations of chromosomes 1 and 2 in spring bread wheat ‘Pavon’, Crop Sci., 2003, vol. 43, no. 2, pp. 710–717. doi 10.2135/cropsci2003.0710

16. Kim, W., Johnson, J.W., Baenziger, P.S., Lukaszewski, A.J., and Gaines, C.S., Agronomic effect of wheat–rye translocation carrying rye chromatin (1R) from different sources, Crop Sci., 2004, vol. 44, no. 4, pp. 1254–1258.

17. Howell, T., Hale, I., Jankuloski, L., Bonafede, M., Gilbert, M., and Dubcovsky, J., Mapping a region within the 1RS.1BL translocation in bread wheat affecting grain yield and canopy water status, Theor. Appl. Genet., 2014, vol. 127, no. 12, pp. 2695–2709. doi 10.1007/s00122-014-2408-6

18. Sharma, S., Bhat, P.R., Ehdaie, B., Close, T.J., Lukashewski, A.J., and Waines, J.G., Integrated genetic map and genetic analysis of a region associated with root traits on the short arm of rye chromosome 1 in bread wheat, Theor. Appl. Genet., 2009, vol. 119, no. 5, pp. 783–793. doi 10.1007/S00122-009-1088-0

19. Kumlay, A.M., Baenziger, P.S., Gill, K.S., Shelton, D.R., Graybosch, R.A., Lukaszewski, A.J., and Wesenberg, D.M., Understanding the effect of rye chromatin in bread wheat, Crop Sci., 2003, vol. 43, no. 5, pp. 1643–1651. doi 10.2135/cropsci2003.1643

20. Karki, D., Wyant, IIIW., Berzonsky, W.A., and Glover, K.D., Investigating physiological and morphological mechanisms of drought tolerance in wheat (Triticum aestivum L.) lines with 1RS translocation, Am. J. Plant Sci., 2014, vol. 5, no. 13, pp. 1936–1944. doi 10.4236/ajps.2014.513207

21. Sozinov, A.A. and Poperelya, F.A., Genetic classification of prolamines and its use for plant breeding, Ann. Technol. Agric., 1980, vol. 29, no. 2, pp. 229–245.

22. Metakovsky, E.V., Gliadin allele identification in common wheat. II Catalogue of gliadin alleles in common wheat, J. Genet. Breed., 1991, vol. 45, no. 4, pp. 325–344.

23. Sobko, T.A. and Poperelya, F.A., The frequency of alleles of gliadin-coding loci in different cultivars of winter common wheat, Visn. Silskogospodar. Nauki, 1986, no. 5, pp. 84–87.

24. Kozub, N.A., Sozinov, I.A., Sobko, T.A., Kolyuchii, V.T., Kuptsov, S.V., and Sozinov, A.A., Variation at storage protein loci in winter common wheat cultivars of the Central Forest-Steppe of Ukraine, Cytol. Genet., 2009, vol. 43, no. 1, pp. 55–62.

25. Shewry, P.R., Bradberry, D., Franklin, J., and White, R.P., The chromosomal locations and linkage relationships of the structural genes for the prolamin storage proteins (secalins) of rye, Theor. Appl. Genet., 1984, vol. 69, no. 1, pp. 63–69. doi 10.1007/BF00262541

26. Lawrence, G.J. and Shepherd, K.W., Chromosomal location of genes controlling seed proteins in species related to wheat, Theor. Appl. Genet., 1981, vol. 59, no. 1, pp. 25–31. doi 10.1007/BF00275771

27. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, no. 5259, pp. 680–685.

28. Motsnyi, I.I., Fayt, V.I., and Blagodarova, E.M., Identification and characteristics of the 1R (1B) substitution lines of bread wheat, Cytol. Genet., 2009, vol. 43, no. 3. pp. 169–76. doi 10.3103/S0095452709030050

29. Kozub, N.A., Motsnyi, I.I., Sozinov, I.A., Blume, Ya.B., and Sozinov, A.A., Mapping a new secalin locus on the rye 1RS arm, Cytol. Genet., 2014, vol. 48, no. 4, pp. 203–207. doi 10.3103/s0095452714040021

30. Haldane, J.B.S. and Waddington, C.H., Inbreeding and linkage, Genetics, 1931, vol. 16, pp. 357–374.

31. Netsvetaev, V.P., Obraztsov, I.S., and Sozinov, A.A., Mapping the Hrd G locus in barley chromosome 5, in Molecular Mechanisms of Genetic Processes, Proceedings of the Vth All-Union Symposium, Moscow: Nauka, 1982.

32. Singh, N.K. and Shepherd, K.W., Linkage mapping of the genes controlling endosperm proteins in wheat. I. Genes on the short arm of group I chromosomes, Theor. Appl. Genet., 1998, vol. 75, no. 4, pp. 628–641.

33. Mater, Y., Baenziger, S., Gill, K., Graybosch, R., Whitcher, L., Baker, C., Specht, J., and Dweikat, I., Linkage mapping of powdery mildew and greenbug resistance genes on recombinant 1RS from Amigo and Kavkaz wheat–rye translocations on chromosome 1RS.1AL, Genome, 2004, vol. 47, no. 2, pp. 292–8. doi 10.1139/g03-101

34. Schneider, A. and Molnár-Láng, M., Detection of the 1RS chromosome arm in Martonvásár wheat genotypes containing 1BL·1RS or 1AL·1RS translocations using SSR and STS markers, Acta Agron. Hung., 2009, vol. 57, no. 4, pp. 409–416. doi.org/10.1556/AAgr.57.2009.4.3

35. Singh, N.K., Shepherd, K.W., and McIntosh, R.A., Linkage mapping of genes for resistance to leaf, stem and stripe rusts and ώ-secalins on the short arm of rye chromosome 1R, Theor. Appl. Genet., 1990, vol. 80, no. 5, pp. 609–616. doi 10.1007/BF00224219

36. Lukashewski, A.J., Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination, Crop Sci., 2000, vol. 40, no. 1, pp. 216–225. doi 10.2135/cropsci2000.401216x

37. Colas, I., Shaw, P., Prieto, P., Wanous, M., Spielmeyer, W., Mago, R., and Moore, G., Effective chromosome pairing requires chromatin remodeling at the onset of meiosis, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, no. 16, pp. 6075–6080. doi 10.1073/pnas.0801521105

38. Mago, R., Miah, H., Lawrence, G.J., Wellings, C.R., Spielmeyer, W., Bariana, H.S., McIntosh, R.A., Pryor, A.J., and Ellis, J.G., High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1, Theor. Appl. Genet., 2005, vol. 112, no. 1, pp. 41–50. doi 10.1007/s00122-005-0098-9

39. Hsam, S.L.K., Mohler, V., Hartl, L., Wenzel, G., and Zeller, F.J., Mapping of powdery mildew and leaf rust resistance genes on the wheat–rye translocated chromosome T1BL.1RS using molecular and biochemical markers, Plant Breed., 2000, vol. 119, no. 1, pp. 87–89. doi.org/10.1046/j.1439-0523.2000.00444.x

40. Mago, R., Spielmeyer, W., Lawrence, J., Lagudah, S., Ellis, G., and Pryor, A., Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat–rye translocation lines, Theor. Appl. Genet., 2002, vol. 104, no. 17, pp. 1317–1324. doi 10.1007/s00122-002-0879-3

41. Liu, S., Rudd, J.C., Bai, G., Haley, S.D., Ibrahim, A.M.H., Xue, Q., Hays, D.B., Graybosch, R.A., Devkota, R.N., and Amand, P.St., Molecular markers linked to important genes in hard winter wheat, Crop Sci., 2014, vol. 54, pp. 1304–1321. doi 10.2135/cropsci2013.08.0564